Search results
Results from the WOW.Com Content Network
For example, given a function defined on the interval [,] and a degree bound , a minimax polynomial approximation algorithm will find a polynomial of degree at most to minimize max a ≤ x ≤ b | f ( x ) − p ( x ) | . {\displaystyle \max _{a\leq x\leq b}|f(x)-p(x)|.} [ 3 ]
The polynomial of best approximation within a given subspace is defined to be the one that minimizes the maximum absolute difference between the polynomial and the function. In this case, the form of the solution is precised by the equioscillation theorem .
In mathematics, least squares function approximation applies the principle of least squares to function approximation, by means of a weighted sum of other functions.The best approximation can be defined as that which minimizes the difference between the original function and the approximation; for a least-squares approach the quality of the approximation is measured in terms of the squared ...
What is meant by best and simpler will depend on the application. A closely related topic is the approximation of functions by generalized Fourier series, that is, approximations based upon summation of a series of terms based upon orthogonal polynomials.
This is often the case for algorithms that work by solving a convex relaxation of the optimization problem on the given input. For example, there is a different approximation algorithm for minimum vertex cover that solves a linear programming relaxation to find a vertex cover that is at most twice the value of the relaxation. Since the value of ...
It was first proved by Hassler Whitney in 1957, [1] and is an important tool in the field of approximation theory for obtaining upper estimates on the errors of best approximation. Statement of the theorem
Henri Padé. In mathematics, a Padé approximant is the "best" approximation of a function near a specific point by a rational function of given order. Under this technique, the approximant's power series agrees with the power series of the function it is approximating.
An example of an important asymptotic result is the prime number theorem. Let π(x) denote the prime-counting function (which is not directly related to the constant pi), i.e. π(x) is the number of prime numbers that are less than or equal to x. Then the theorem states that .