Search results
Results from the WOW.Com Content Network
The aqueous solution in the classical reaction contains glucose, sodium hydroxide and methylene blue. [14] In the first step an acyloin of glucose is formed. The next step is a redox reaction of the acyloin with methylene blue in which the glucose is oxidized to diketone in alkaline solution [6] and methylene blue is reduced to colorless leucomethylene blue.
The term alcohol originally referred to the primary alcohol ethanol (ethyl alcohol), which is used as a drug and is the main alcohol present in alcoholic drinks. The suffix -ol appears in the International Union of Pure and Applied Chemistry (IUPAC) chemical name of all substances where the hydroxyl group is the functional group with the ...
Water-reactive substances [1] are those that spontaneously undergo a chemical reaction with water, often noted as generating flammable gas. [2] Some are highly reducing in nature. [ 3 ] Notable examples include alkali metals , lithium through caesium , and alkaline earth metals , magnesium through barium .
Pellets of soda lye (sodium hydroxide) Pellets of potash lye (potassium hydroxide)Lye is a hydroxide, either sodium hydroxide or potassium hydroxide.The word lye most accurately refers to sodium hydroxide (NaOH), [citation needed] but historically has been conflated to include other alkali materials, most notably potassium hydroxide (KOH).
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
The more opportunity the Cl 2 has to interact with NaOH in the solution, the less Cl 2 emerges at the surface of the solution and the faster the production of hypochlorite progresses. This depends on factors such as solution temperature, the amount of time the Cl 2 molecule is in contact with the solution, and concentration of NaOH.
The alkoxide ion is a strong base so the proton is transferred from the carboxylic acid to the alkoxide ion, creating an alcohol: saponification part III. In a classic laboratory procedure, the triglyceride trimyristin is obtained by extracting it from nutmeg with diethyl ether. Saponification to the soap sodium myristate takes place using NaOH ...
This reaction was developed by Alexander Williamson in 1850. [2] Typically it involves the reaction of an alkoxide ion with a primary alkyl halide via an S N 2 reaction. This reaction is important in the history of organic chemistry because it helped prove the structure of ethers. The general reaction mechanism is as follows: [3]