Search results
Results from the WOW.Com Content Network
In number theory, a narcissistic number [1] [2] (also known as a pluperfect digital invariant (PPDI), [3] an Armstrong number [4] (after Michael F. Armstrong) [5] or a plus perfect number) [6] in a given number base is a number that is the sum of its own digits each raised to the power of the number of digits.
For example 111111111111111 (15 digits) is divisible by 111 and 11111 in that base. If a number m can be expressed as a string of prime length to some base, such a number may or may not be prime, but commonly is not; for example, to base 10, there are only three such numbers of length less than 100 (1 is by definition, not prime). The three are:
This is a list of recreational number theory topics (see number theory, recreational mathematics). Listing here is not pejorative : many famous topics in number theory have origins in challenging problems posed purely for their own sake.
A number that is non-palindromic in all bases b in the range 2 ≤ b ≤ n − 2 can be called a strictly non-palindromic number. For example, the number 6 is written as "110" in base 2, "20" in base 3, and "12" in base 4, none of which are palindromes. All strictly non-palindromic numbers larger than 6 are prime.
An answer to the P versus NP question would determine whether problems that can be verified in polynomial time can also be solved in polynomial time. If P ≠ NP, which is widely believed, it would mean that there are problems in NP that are harder to compute than to verify: they could not be solved in polynomial time, but the answer could be ...
The question is whether knowing the warden's answer changes the prisoner's chances of being pardoned. This problem is equivalent to the Monty Hall problem; the prisoner asking the question still has a 1 / 3 chance of being pardoned but his unnamed colleague has a 2 / 3 chance.
Sieve of Eratosthenes: algorithm steps for primes below 121 (including optimization of starting from prime's square). In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit.
First, place the natural numbers along the top row. To determine a number in the table, take the number immediately to the left. Then use that number to look up the required number in the column given by that number and one row up. If there is no number to its left, simply look at the column headed "1" in the previous row.