enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isometry - Wikipedia

    en.wikipedia.org/wiki/Isometry

    A path isometry or arcwise isometry is a map which preserves the lengths of curves; such a map is not necessarily an isometry in the distance preserving sense, and it need not necessarily be bijective, or even injective. [5] [6] This term is often abridged to simply isometry, so one should take care to determine from context which type is intended.

  3. Rigid transformation - Wikipedia

    en.wikipedia.org/wiki/Rigid_transformation

    In mathematics, a rigid transformation (also called Euclidean transformation or Euclidean isometry) is a geometric transformation of a Euclidean space that preserves the Euclidean distance between every pair of points. [1] [self-published source] [2] [3] The rigid transformations include rotations, translations, reflections, or any sequence of ...

  4. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    In geometry, a Euclidean plane isometry is an isometry of the Euclidean plane, or more informally, a way of transforming the plane that preserves geometrical properties such as length. There are four types: translations , rotations , reflections , and glide reflections (see below § Classification ).

  5. Beckman–Quarles theorem - Wikipedia

    en.wikipedia.org/wiki/Beckman–Quarles_theorem

    In geometry, the Beckman–Quarles theorem states that if a transformation of the Euclidean plane or a higher-dimensional Euclidean space preserves unit distances, then it preserves all Euclidean distances. Equivalently, every homomorphism from the unit distance graph of the plane to itself must be an isometry of the plane. The theorem is named ...

  6. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    The translations by a given distance in any direction form a conjugacy class; the translation group is the union of those for all distances. In 1D, all reflections are in the same class. In 2D, rotations by the same angle in either direction are in the same class. Glide reflections with translation by the same distance are in the same class. In 3D:

  7. Point reflection - Wikipedia

    en.wikipedia.org/wiki/Point_reflection

    In Euclidean or pseudo-Euclidean spaces, a point reflection is an isometry (preserves distance). [1] In the Euclidean plane, a point reflection is the same as a half-turn rotation (180° or π radians), while in three-dimensional Euclidean space a point reflection is an improper rotation which preserves distances but reverses orientation.

  8. Why BMI is not the obesity measurement we need - AOL

    www.aol.com/why-bmi-not-obesity-measurement...

    A panel of global experts explains why BMI is not the most helpful measurement of body weight, and how else doctors can diagnose obesity. Image credit: VICTOR TORRES/Stocksy.

  9. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. [1] Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.