enow.com Web Search

  1. Ad

    related to: transformation rotation worksheet pdf example
  2. generationgenius.com has been visited by 10K+ users in the past month

Search results

  1. Results from the WOW.Com Content Network
  2. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  3. Active and passive transformation - Wikipedia

    en.wikipedia.org/wiki/Active_and_passive...

    Geometric transformations can be distinguished into two types: active or alibi transformations which change the physical position of a set of points relative to a fixed frame of reference or coordinate system (alibi meaning "being somewhere else at the same time"); and passive or alias transformations which leave points fixed but change the ...

  4. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    More affine transformations can be obtained by composition of two or more affine transformations. For example, given a translation T' with vector (′, ′), a rotation R by an angle θ counter-clockwise, a scaling S with factors (,) and a translation T of vector (,), the result M of T'RST is: [8] [⁡ ⁡ ⁡ ⁡ + ′ ⁡ ⁡ ⁡ + ⁡ + ′]

  5. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3) , the group of all rotation matrices ...

  6. Infinitesimal transformation - Wikipedia

    en.wikipedia.org/wiki/Infinitesimal_transformation

    For example, in the case of infinitesimal rotations, the Lie algebra structure is that provided by the cross product, once a skew-symmetric matrix has been identified with a 3-vector. This amounts to choosing an axis vector for the rotations; the defining Jacobi identity is a well-known property of cross products.

  7. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    Rotation matrices have a determinant of +1, and reflection matrices have a determinant of −1. The set of all orthogonal two-dimensional matrices together with matrix multiplication form the orthogonal group: O(2). The following table gives examples of rotation and reflection matrix :

  8. Direct-quadrature-zero transformation - Wikipedia

    en.wikipedia.org/wiki/Direct-quadrature-zero...

    The transformation is equivalent to the product of the Clarke transformation and a rotation. [3] The Park transformation is often used in the context of electrical engineering with three-phase circuits. The transformation can be used to rotate the reference frames of AC waveforms such that they become DC signals. Simplified calculations can ...

  9. Infinitesimal rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Infinitesimal_rotation_matrix

    An infinitesimal rotation matrix or differential rotation matrix is a matrix representing an infinitely small rotation.. While a rotation matrix is an orthogonal matrix = representing an element of () (the special orthogonal group), the differential of a rotation is a skew-symmetric matrix = in the tangent space (the special orthogonal Lie algebra), which is not itself a rotation matrix.

  1. Ad

    related to: transformation rotation worksheet pdf example