Search results
Results from the WOW.Com Content Network
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships in probability, logic, statistics, linguistics and computer science.
Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics. [3] Unlike axiomatic set theories, which are defined using formal logic, naive set theory is defined informally, in natural language.
Venn diagram showing the union of sets A and B as everything not in white. In combinatorics, the inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets; symbolically expressed as
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.
In commemoration of the 180th anniversary of Venn's birth, on 4 August 2014, Google replaced its normal logo on global search pages with an interactive and animated Google Doodle that incorporated the use of a Venn diagram. [24] [25] Venn Street in Clapham, London, which was the home of his grandfather, shows a Venn diagram on the street sign. [26]
Get breaking Finance news and the latest business articles from AOL. From stock market news to jobs and real estate, it can all be found here.
The Venn diagram is constructed with a collection of simple closed curves drawn in the plane. The principle of these diagrams is that classes be represented by regions in such relation to one another that all the possible logical relations of these classes can be indicated in the same diagram.
Venn diagram of information theoretic measures for three variables x, y, and z. Each circle represents an individual entropy : H ( x ) {\displaystyle H(x)} is the lower left circle, H ( y ) {\displaystyle H(y)} the lower right, and H ( z ) {\displaystyle H(z)} is the upper circle.