Search results
Results from the WOW.Com Content Network
A set of Gold code sequences consists of 2 n + 1 sequences each one with a period of 2 n − 1. A set of Gold codes can be generated with the following steps. Pick two maximum length sequences of the same length 2 n − 1 such that their absolute cross-correlation is less than or equal to 2 ( n +2)/2 , where n is the size of the linear-feedback ...
The C/A PRN codes are Gold codes with a period of 1023 chips transmitted at 1.023 Mchip/s, causing the code to repeat every 1 millisecond. They are exclusive-ored with a 50 bit/s navigation message and the result phase modulates the carrier as previously described .
Binary offset carrier modulation [1] [2] (BOC modulation) was developed by John Betz in order to allow interoperability of satellite navigation systems. It is currently used in the US GPS system, Indian IRNSS system and in Galileo [3] and is a square sub-carrier modulation, where a signal is multiplied by a rectangular sub-carrier of frequency equal to or greater than the chip rate.
GPS signals can also be affected by multipath issues, where the radio signals reflect off surrounding terrain; buildings, canyon walls, hard ground, etc. These delayed signals cause measurement errors that are different for each type of GPS signal due to its dependency on the wavelength.
Demodulating and Decoding GPS Satellite Signals using the Coarse/Acquisition Gold code. Because all of the satellite signals are modulated onto the same L1 carrier frequency, the signals must be separated after demodulation. This is done by assigning each satellite a unique binary sequence known as a Gold code. The signals are decoded after ...
When modeling spatial correlation it is useful to employ the Kronecker model, where the correlation between transmit antennas and receive antennas are assumed independent and separable. This model is reasonable when the main scattering appears close to the antenna arrays and has been validated by both outdoor and indoor measurements. [2] [3]
Time to first fix (TTFF) is a measure of the time required for a GPS navigation device to acquire satellite signals and navigation data, and calculate a position solution (called a fix). An animation depicting the orbits of GPS satellites in medium Earth orbit
Satellite navigation solution for the receiver's position (geopositioning) involves an algorithm.In essence, a GNSS receiver measures the transmitting time of GNSS signals emitted from four or more GNSS satellites (giving the pseudorange) and these measurements are used to obtain its position (i.e., spatial coordinates) and reception time.