Search results
Results from the WOW.Com Content Network
The concept of unit circle (the set of all vectors of norm 1) is different in different norms: for the 1-norm, the unit circle is a square oriented as a diamond; for the 2-norm (Euclidean norm), it is the well-known unit circle; while for the infinity norm, it is an axis-aligned square.
The Frobenius norm defined by ‖ ‖ = = = | | = = = {,} is self-dual, i.e., its dual norm is ‖ ‖ ′ = ‖ ‖.. The spectral norm, a special case of the induced norm when =, is defined by the maximum singular values of a matrix, that is, ‖ ‖ = (), has the nuclear norm as its dual norm, which is defined by ‖ ‖ ′ = (), for any matrix where () denote the singular values ...
Download as PDF; Printable version; ... [2] The norm is discrete if there ... An abelian group is a free abelian group if and only if it has a discrete norm. [2]
More generally, in the presence of a ring involution or where 2 is not invertible, one distinguishes -quadratic forms and -symmetric forms; a symmetric form defines a quadratic form, and the polarization identity (without a factor of 2) from a quadratic form to a symmetric form is called the "symmetrization map", and is not in general an ...
For example, points (2, 0), (2, 1), and (2, 2) lie along the perimeter of a square and belong to the set of vectors whose sup norm is 2. In mathematical analysis , the uniform norm (or sup norm ) assigns, to real- or complex -valued bounded functions f {\displaystyle f} defined on a set S {\displaystyle S} , the non-negative number
In mathematics, a partition of an interval [a, b] on the real line is a finite sequence x 0, x 1, x 2, …, x n of real numbers such that a = x 0 < x 1 < x 2 < … < x n = b . In other terms, a partition of a compact interval I is a strictly increasing sequence of numbers (belonging to the interval I itself) starting from the initial point of I ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In commutative algebra, the norm of an ideal is a generalization of a norm of an element in the field extension. It is particularly important in number theory since it measures the size of an ideal of a complicated number ring in terms of an ideal in a less complicated ring .