enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.

  3. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.

  4. Matter wave - Wikipedia

    en.wikipedia.org/wiki/Matter_wave

    Using two formulas from special relativity, one for the relativistic mass energy and one for the relativistic momentum = = = = allows the equations for de Broglie wavelength and frequency to be written as = = = =, where = | | is the velocity, the Lorentz factor, and the speed of light in vacuum.

  5. Planck constant - Wikipedia

    en.wikipedia.org/wiki/Planck_constant

    The Planck constant, or Planck's constant, denoted by , [1] is a fundamental physical constant [1] of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a matter wave equals the Planck constant divided by the associated particle momentum.

  6. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    This formula, apart from the first vacuum energy term, is a special case of the general formula for particles obeying Bose–Einstein statistics. Since there is no restriction on the total number of photons, the chemical potential is zero.

  7. Wavelength - Wikipedia

    en.wikipedia.org/wiki/Wavelength

    Wavelength depends on the medium (for example, vacuum, air, or water) that a wave travels through. Examples of waves are sound waves, light, water waves and periodic electrical signals in a conductor. A sound wave is a variation in air pressure, while in light and other electromagnetic radiation the strength of the electric and the magnetic ...

  8. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    In 1900, Max Planck postulated the proportionality between the frequency of a photon and its energy , =, [11] [12] and in 1916 the corresponding relation between a photon's momentum and wavelength, =, [13] where is the Planck constant.

  9. Emission spectrum - Wikipedia

    en.wikipedia.org/wiki/Emission_spectrum

    The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to electrons making a transition from a high energy state to a lower energy state. The photon energy of the emitted photons is equal to the energy difference between the two states. There are many possible ...