Search results
Results from the WOW.Com Content Network
where a represents the number of recursive calls at each level of recursion, b represents by what factor smaller the input is for the next level of recursion (i.e. the number of pieces you divide the problem into), and f(n) represents the work that the function does independently of any recursion (e.g. partitioning, recombining) at each level ...
This characterization states that a function is primitive recursive if and only if there is a natural number m such that the function can be computed by a Turing machine that always halts within A(m,n) or fewer steps, where n is the sum of the arguments of the primitive recursive function.
In an algorithm of this sort (as for divide and conquer algorithms in general [5]), it is desirable to use a larger base case in order to amortize the overhead of the recursion. If N = 1, then there is roughly one recursive subroutine call for every input, but more generally there is one recursive call for (roughly) every N/2 inputs if the ...
The primitive recursive functions are a subset of the total recursive functions, which are a subset of the partial recursive functions. For example, the Ackermann function can be proven to be total recursive, and to be non-primitive. Primitive or "basic" functions: Constant functions C k n: For each natural number n and every k
For all integers n > 1, Fib(n) = Fib(n − 1) + Fib(n − 2). Many mathematical axioms are based upon recursive rules. For example, the formal definition of the natural numbers by the Peano axioms can be described as: "Zero is a natural number, and each natural number has a successor, which is also a natural number."
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
is constant-recursive because it satisfies the linear recurrence = +: each number in the sequence is the sum of the previous two. [2] Other examples include the power of two sequence 1 , 2 , 4 , 8 , 16 , … {\displaystyle 1,2,4,8,16,\ldots } , where each number is the sum of twice the previous number, and the square number sequence 0 , 1 , 4 ...