Search results
Results from the WOW.Com Content Network
This type of stress may be called (simple) normal stress or uniaxial stress; specifically, (uniaxial, simple, etc.) tensile stress. [13] If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress σ {\displaystyle \sigma } change sign, and the stress is called compressive ...
The solution to the elastostatic problem now consists of finding the three stress functions which give a stress tensor which obeys the Beltrami-Michell compatibility equations. Substituting the expressions for the stress into the Beltrami-Michell equations yields the expression of the elastostatic problem in terms of the stress functions: [4]
Stress analysis is specifically concerned with solid objects. The study of stresses in liquids and gases is the subject of fluid mechanics.. Stress analysis adopts the macroscopic view of materials characteristic of continuum mechanics, namely that all properties of materials are homogeneous at small enough scales.
Ratio of stress to strain pascal (Pa = N/m 2) L −1 M T −2: scalar; assumes isotropic linear material spring constant: k: k is the torsional constant (measured in N·m/radian), which characterizes the stiffness of the torsional spring or the resistance to angular displacement. N/m M T −2: scalar
The classical example (and namesake) of hoop stress is the tension applied to the iron bands, or hoops, of a wooden barrel. In a straight, closed pipe , any force applied to the cylindrical pipe wall by a pressure differential will ultimately give rise to hoop stresses.
For more general situations, any of a number of stress measures can be used, and it is generally desired (but not required) that the elastic stress–strain relation be phrased in terms of a finite strain measure that is work conjugate to the selected stress measure, i.e., the time integral of the inner product of the stress measure with the ...
In continuum mechanics, the most commonly used measure of stress is the Cauchy stress tensor, often called simply the stress tensor or "true stress". However, several alternative measures of stress can be defined: [1] [2] [3] The Kirchhoff stress (). The nominal stress ().
Shear stress (often denoted by τ, Greek: tau) is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.