Search results
Results from the WOW.Com Content Network
This type of stress may be called (simple) normal stress or uniaxial stress; specifically, (uniaxial, simple, etc.) tensile stress. [13] If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress σ {\displaystyle \sigma } change sign, and the stress is called compressive ...
In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies).
The stress (or load, or deflection) the structure is expected to experience are known as the working, the design or limit stress. The limit stress, for example, is chosen to be some fraction of the yield strength of the material from which the structure is made. The ratio of the ultimate strength of the material to the allowable stress is ...
It gives the contact stress as a function of the normal contact force, the radii of curvature of both bodies and the modulus of elasticity of both bodies. Hertzian contact stress forms the foundation for the equations for load bearing capabilities and fatigue life in bearings, gears, and any other bodies where two surfaces are in contact.
The Airy stress function is a special case of the Maxwell stress functions, in which it is assumed that A=B=0 and C is a function of x and y only. [2] This stress function can therefore be used only for two-dimensional problems.
Plane stress typically occurs in thin flat plates that are acted upon only by load forces that are parallel to them. In certain situations, a gently curved thin plate may also be assumed to have plane stress for the purpose of stress analysis. This is the case, for example, of a thin-walled cylinder filled with a fluid under pressure.
Shear stress (often denoted by τ, Greek: tau) is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.
The first index i indicates that the stress acts on a plane normal to the X i-axis, and the second index j denotes the direction in which the stress acts (For example, σ 12 implies that the stress is acting on the plane that is normal to the 1 st axis i.e.;X 1 and acts along the 2 nd axis i.e.;X 2). A stress component is positive if it acts in ...