Search results
Results from the WOW.Com Content Network
The Sun is the star at the center of the Solar System.It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light and infrared radiation with 10% at ultraviolet energies.
Gravitational parameter: m 3/ s 2: 1.327×10 20: Density: g/cm 3: 1.409 Equatorial gravity: m/s 2 g: 274.0 27.94 Escape velocity: km/s: 617.7 Rotation period days: 25.38 Orbital period about Galactic Center [4] million years 225–250 Mean orbital speed [4] km/s: ≈ 220 Axial tilt to the ecliptic: deg. 7.25 Axial tilt to the galactic plane ...
The surface gravity, g, of an astronomical object is the gravitational acceleration experienced at its surface at the equator, including the effects of rotation. The surface gravity may be thought of as the acceleration due to gravity experienced by a hypothetical test particle which is very close to the object's surface and which, in order not to disturb the system, has negligible mass.
The Sun's gravitational field is estimated to dominate the gravitational forces of surrounding stars out to about two light-years (125,000 AU). Lower estimates for the radius of the Oort cloud, by contrast, do not place it farther than 50,000 AU. [255] Most of the mass is orbiting in the region between 3,000 and 100,000 AU. [256]
[2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude. A conventional standard value is defined exactly as 9.80665 m/s² (about 32.1740 ft/s²). Locations of significant variation from this value are known as gravity ...
For the giant planets, the "radius" is defined as the distance from the center at which the atmosphere reaches 1 bar of atmospheric pressure. [11] Because Sedna and 2002 MS 4 have no known moons, directly determining their mass is impossible without sending a probe (estimated to be from 1.7x10 21 to 6.1×10 21 kg for Sedna [12]).
In the patched conic approximation, once an object leaves the planet's SOI, the primary/only gravitational influence is the Sun (until the object enters another body's SOI). Because the definition of r SOI relies on the presence of the Sun and a planet, the term is only applicable in a three-body or greater system and requires the mass of the ...
If the four giant planets were on a straight line on the same side of the Sun, the combined center of mass would lie at about 1.17 solar radii, or just over 810,000 km, above the Sun's surface. [ 7 ] The calculations above are based on the mean distance between the bodies and yield the mean value r 1 .