enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  3. Ramanujan summation - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_summation

    Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

  4. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    In mathematics, the infinite series ⁠ 1 / 2 ⁠ + ⁠ 1 / 4 ⁠ + ⁠ 1 / 8 ⁠ + ⁠ 1 / 16 ⁠ + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1.

  5. Lazy evaluation - Wikipedia

    en.wikipedia.org/wiki/Lazy_evaluation

    The actual values are only computed when needed. For example, one could create a function that creates an infinite list (often called a stream) of Fibonacci numbers. The calculation of the n-th Fibonacci number would be merely the extraction of that element from the infinite list, forcing the evaluation of only the first n members of the list.

  6. Truncation error - Wikipedia

    en.wikipedia.org/wiki/Truncation_error

    In reality, we can only use a finite number of these terms as it would take an infinite amount of computational time to make use of all of them. So let's suppose we use only three terms of the series, then e x ≈ 1 + x + x 2 2 ! {\displaystyle e^{x}\approx 1+x+{\frac {x^{2}}{2!}}}

  7. List of C++ multiple precision arithmetic libraries - Wikipedia

    en.wikipedia.org/wiki/List_of_C++_multiple...

    The following is an incomplete list of some arbitrary-precision arithmetic libraries for C++. GMP [1] [nb 1] MPFR [3] MPIR [4] TTMath [5] Arbitrary Precision Math C++ Package [6] Class Library for Numbers; Number Theory Library; Apfloat [7] C++ Big Integer Library [8] MAPM [9] ARPREC [10] InfInt [11] Universal Numbers [12] mp++ [13] num7 [14]

  8. Cesàro summation - Wikipedia

    en.wikipedia.org/wiki/Cesàro_summation

    In mathematical analysis, Cesàro summation (also known as the Cesàro mean [1] [2] or Cesàro limit [3]) assigns values to some infinite sums that are not necessarily convergent in the usual sense. The Cesàro sum is defined as the limit, as n tends to infinity, of the sequence of arithmetic means of the first n partial sums of the series.

  9. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (,,, …) defines a series S that is denoted = + + + = =. The n th partial sum S n is the sum of the first n terms of the sequence; that is,