Search results
Results from the WOW.Com Content Network
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers , dimensionless ratios, or dimensionless physical constants ; these topics are discussed in the article.
The following list includes the continued fractions of some constants and is sorted by their representations. Continued fractions with more than 20 known terms have been truncated, with an ellipsis to show that they continue. Rational numbers have two continued fractions; the version in this list is the shorter one.
The quantity proportional to the number of particles in a sample, with the Avogadro constant as the proportionality constant: mole (mol) N: extensive, scalar Luminous intensity: I v: Wavelength-weighted power of emitted light per unit solid angle: candela (cd) J: scalar
The other constants (D excepted) govern the size, age, and expansion of the universe. These five constants must be estimated empirically. D, on the other hand, is necessarily a nonzero natural number and does not have an uncertainty. Hence most physicists would not deem it a dimensionless physical constant of the sort discussed in this entry.
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...
The same physical constant may move from one category to another as the understanding of its role deepens; this has notably happened to the speed of light, which was a class A constant (characteristic of light) when it was first measured, but became a class B constant (characteristic of electromagnetic phenomena) with the development of ...
Аԥсшәа; العربية; Aragonés; Asturianu; বাংলা; 閩南語 / Bân-lâm-gú; Башҡортса; Беларуская; Беларуская ...
Feigenbaum originally related the first constant to the period-doubling bifurcations in the logistic map, but also showed it to hold for all one-dimensional maps with a single quadratic maximum. As a consequence of this generality, every chaotic system that corresponds to this description will bifurcate at the same rate.