enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power factor - Wikipedia

    en.wikipedia.org/wiki/Power_factor

    The power factor in a single-phase circuit (or balanced three-phase circuit) can be measured with the wattmeter-ammeter-voltmeter method, where the power in watts is divided by the product of measured voltage and current. The power factor of a balanced polyphase circuit is the same as that of any phase. The power factor of an unbalanced ...

  3. Motor constants - Wikipedia

    en.wikipedia.org/wiki/Motor_constants

    is the resistive power loss (SI unit: watt) The motor constant is winding independent (as long as the same conductive material is used for wires); e.g., winding a motor with 6 turns with 2 parallel wires instead of 12 turns single wire will double the velocity constant, , but remains unchanged.

  4. Mathematics of three-phase electric power - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_three-phase...

    The plotted line represents the variation of instantaneous voltage (or current) with respect to time. This cycle repeats with a frequency that depends on the power system. In electrical engineering, three-phase electric power systems have at least three conductors carrying alternating voltages that are offset in time by one-third of the period ...

  5. Induction motor - Wikipedia

    en.wikipedia.org/wiki/Induction_motor

    Many useful motor relationships between time, current, voltage, speed, power factor, and torque can be obtained from analysis of the Steinmetz equivalent circuit (also termed T-equivalent circuit or IEEE recommended equivalent circuit), a mathematical model used to describe how an induction motor's electrical input is transformed into useful ...

  6. Electric motor - Wikipedia

    en.wikipedia.org/wiki/Electric_motor

    An induction motor is an asynchronous AC motor where power is transferred to the rotor by electromagnetic induction, much like transformer action. An induction motor resembles a rotating transformer, because the stator (stationary part) is essentially the primary side of the transformer and the rotor (rotating part) is the secondary side.

  7. Synchronous motor - Wikipedia

    en.wikipedia.org/wiki/Synchronous_motor

    This ability to selectively control power factor can be exploited for power factor correction of the power system to which the motor is connected. Since most power systems of any significant size have a net lagging power factor, the presence of overexcited synchronous motors moves the system's net power factor closer to unity, improving efficiency.

  8. Traction motor - Wikipedia

    en.wikipedia.org/wiki/Traction_motor

    [citation needed] Calculation: 0.9 × 0.9 = 0.81 Individual traction motor ratings usually range up 1,600 kW (2,100 hp). Another important factor when traction motors are designed or specified is operational speed. The motor armature has a maximum safe rotating speed at or below which the windings will stay safely in place.

  9. Power rating - Wikipedia

    en.wikipedia.org/wiki/Power_rating

    The service factor is typically in the 1.15-1.4 range, with the figure being lower for higher-power motors. For every hour of operation at the service-factor-adjusted power rating, a motor loses two to three hours of life at nominal power, i.e. its service life is reduced to less than half for continued operation at this level.