enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.

  3. Non-integer base of numeration - Wikipedia

    en.wikipedia.org/wiki/Non-integer_base_of_numeration

    With base e the natural logarithm behaves like the common logarithm in base 10, as ln(1 e) = 0, ln(10 e) = 1, ln(100 e) = 2 and ln(1000 e) = 3 (or more precisely the representation in base e of 3, which is of course a non-terminating number).

  4. Decimal - Wikipedia

    en.wikipedia.org/wiki/Decimal

    In this context, the usual decimals, with a finite number of non-zero digits after the decimal separator, are sometimes called terminating decimals. A repeating decimal is an infinite decimal that, after some place, repeats indefinitely the same sequence of digits (e.g., 5.123144144144144... = 5.123 144 ). [ 4 ]

  5. Decimal representation - Wikipedia

    en.wikipedia.org/wiki/Decimal_representation

    Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".

  6. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    Conversely, a decimal expansion that terminates or repeats must be a rational number. These are provable properties of rational numbers and positional number systems and are not used as definitions in mathematics. Irrational numbers can also be expressed as non-terminating continued fractions (which in some cases are periodic), and in many ...

  7. 0.999... - Wikipedia

    en.wikipedia.org/wiki/0.999...

    The definition of real numbers as Cauchy sequences was first published separately by Eduard Heine and Georg Cantor, also in 1872. [32] The above approach to decimal expansions, including the proof that 0.999... = 1, closely follows Griffiths & Hilton's 1970 work A comprehensive textbook of classical mathematics: A contemporary interpretation. [37]

  8. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Fractions: A representation of a non-integer as a ratio of two integers. These include improper fractions as well as mixed numbers . Continued fraction : An expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of ...

  9. Golden ratio base - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio_base

    Every non-negative rational number can be represented as a recurring base-φ expansion, as can any non-negative element of the field Q[√ 5] = Q + √ 5 Q, the field generated by the rational numbers and . Conversely any recurring (or terminating) base-φ expansion is a non-negative element of Q[√ 5]. For recurring decimals, the recurring ...