Search results
Results from the WOW.Com Content Network
The same formula applies to octonions, with a zero real part and a norm equal to 1. These formulas are a direct generalization of Euler's identity, since i {\displaystyle i} and − i {\displaystyle -i} are the only complex numbers with a zero real part and a norm (absolute value) equal to 1 .
Graphs of y = b x for various bases b: base 10, base e, base 2, base 1 / 2 . Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.
Substituting r(cos θ + i sin θ) for e ix and equating real and imaginary parts in this formula gives dr / dx = 0 and dθ / dx = 1. Thus, r is a constant, and θ is x + C for some constant C. The initial values r(0) = 1 and θ(0) = 0 come from e 0i = 1, giving r = 1 and θ = x.
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
An imaginary number is the product of a real number and the imaginary unit i, [note 1] which is defined by its property i 2 = −1. [1] [2] The square of an imaginary number bi is −b 2. For example, 5i is an imaginary number, and its square is −25. The number zero is considered to be both real and imaginary. [3]
The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .
The standard definition of ordinal exponentiation with base α is: =, =, when has an immediate predecessor . = {< <}, whenever is a limit ordinal. From this definition, it follows that for any fixed ordinal α > 1, the mapping is a normal function, so it has arbitrarily large fixed points by the fixed-point lemma for normal functions.
As a complex number, i can be represented in rectangular form as 0 + 1i, with a zero real component and a unit imaginary component. In polar form, i can be represented as 1 × e πi /2 (or just e πi /2), with an absolute value (or magnitude) of 1 and an argument (or angle) of radians.