enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    Inversely, for calculating the distance where a body has to orbit in order to have a given orbital period T: a = G M T 2 4 π 2 3 {\displaystyle a={\sqrt[{3}]{\frac {GMT^{2}}{4\pi ^{2}}}}} For instance, for completing an orbit every 24 hours around a mass of 100 kg , a small body has to orbit at a distance of 1.08 meters from the central body's ...

  3. Kepler's equation - Wikipedia

    en.wikipedia.org/wiki/Kepler's_equation

    In orbital mechanics, Kepler's equation relates various geometric properties of the orbit of a body subject to a central force.. It was derived by Johannes Kepler in 1609 in Chapter 60 of his Astronomia nova, [1] [2] and in book V of his Epitome of Copernican Astronomy (1621) Kepler proposed an iterative solution to the equation.

  4. Mean longitude - Wikipedia

    en.wikipedia.org/wiki/Mean_longitude

    Define the angular distance along the plane of the orbit from the ascending node to the pericenter as the argument of the pericenter, ω. Define the mean anomaly, M, as the angular distance from the pericenter which the body would have if it moved in a circular orbit, in the same orbital period as the actual body in its elliptical orbit.

  5. Mean motion - Wikipedia

    en.wikipedia.org/wiki/Mean_motion

    Kepler's 3rd law of planetary motion states, the square of the periodic time is proportional to the cube of the mean distance, [4] or a 3 ∝ P 2 , {\displaystyle {a^{3}}\propto {P^{2}},} where a is the semi-major axis or mean distance, and P is the orbital period as above.

  6. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  7. Circular orbit - Wikipedia

    en.wikipedia.org/wiki/Circular_orbit

    A circular orbit is an orbit with a fixed distance around the barycenter; that is, in the shape of a circle. In this case, not only the distance, but also the speed, angular speed, potential and kinetic energy are constant. There is no periapsis or apoapsis. This orbit has no radial version.

  8. Spacecraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_flight_dynamics

    This is defined as the distance from a satellite at which its gravitational pull on a spacecraft equals that of its central body, which is = /, where D is the mean distance from the satellite to the central body, and m c and m s are the masses of the central body and satellite, respectively. This value is approximately 66,300 kilometers (35,800 ...

  9. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    Rotation period with respect to distant stars, the sidereal rotation period (compared to Earth's mean Solar days) Synodic rotation period (mean Solar day) Apparent rotational period viewed from Earth Sun [i] 25.379995 days (Carrington rotation) 35 days (high latitude) 25 d 9 h 7 m 11.6 s 35 d ~28 days (equatorial) [2] Mercury: 58.6462 days [3 ...