Search results
Results from the WOW.Com Content Network
In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...
The loss of electrons from an atom or molecule is called oxidation, and the gain of electrons is reduction. This can be easily remembered through the use of mnemonic devices. Two of the most popular are "OIL RIG" (Oxidation Is Loss, Reduction Is Gain) and "LEO" the lion says "GER" (Lose Electrons: Oxidation, Gain Electrons: Reduction ...
The process that occurs is similar to the Q-cycle in Complex III of the electron transport chain. In the first reaction, PQH 2 binds to the complex on the lumen side and one electron is transferred to the iron-sulfur center which then transfers it to cytochrome f which then transfers it to plastocyanin.
The blue colour of the solution is due to ammoniated electrons, which absorb energy in the visible region of light. The diffusivity of the solvated electron in liquid ammonia can be determined using potential-step chronoamperometry. [6] Solvated electrons in ammonia are the anions of salts called electrides. Na + 6 NH 3 → [Na(NH 3) 6] + + e −
In a full electrochemical cell, species from one half-cell lose electrons to their electrode while species from the other half-cell gain electrons from their electrode. A salt bridge (e.g., filter paper soaked in KNO 3, NaCl, or some other electrolyte) is used to ionically connect two half-cells with different electrolytes, but it prevents the ...
The two free electrons then travel towards the anode and gain sufficient energy from the electric field to cause impact ionization when the next collisions occur; and so on. This is effectively a chain reaction of electron generation, and is dependent on the free electrons gaining sufficient energy between collisions to sustain the avalanche.
Antoine Lavoisier demonstrated that this loss of weight was due to the loss of oxygen as a gas. Later, scientists realized that the metal atom gains electrons in this process. The meaning of reduction then became generalized to include all processes involving a gain of electrons. [10]
In such cases, the electron transfer is termed intermolecular electron transfer. A famous example of an inner sphere ET process that proceeds via a transitory bridged intermediate is the reduction of [CoCl(NH 3) 5] 2+ by [Cr(H 2 O) 6] 2+. [5] [6] In this case, the chloride ligand is the bridging ligand that covalently connects the redox ...