Search results
Results from the WOW.Com Content Network
Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.
And these systems of the mathematics convention may measure the azimuthal angle counterclockwise (i.e., from the south direction x-axis, or 180°, towards the east direction y-axis, or +90°)—rather than measure clockwise (i.e., from the north direction x-axis, or 0°, towards the east direction y-axis, or +90°), as done in the horizontal ...
The radial inclination of a distal radius fracture is shown in red in image at right. The angle is measured between: [4] [5] A line drawn between the distal ends of the articular surface of the radius on an AP view of the wrist. A line that is perpendicular to the diaphysis of the radius. Radial inclination is normally 21-25°. [6]
Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).
In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit.It is the angle between the direction of periapsis and the current position of the body, as seen from the main focus of the ellipse (the point around which the object orbits).
Radial velocity curve with peak radial velocity K=1 m/s and orbital period 2 years. The peak radial velocity is the semi-amplitude of the radial velocity curve, as shown in the figure. The orbital period is found from the periodicity in the radial velocity curve. These are the two observable quantities needed to calculate the binary mass function.
The eccentricity of an orbit is a measure of how elliptical (elongated) it is. All the planets of the Solar System except for Mercury have near-circular orbits (e<0.1). [8] Most exoplanets with orbital periods of 20 days or less have near-circular orbits, i.e. very low eccentricity.
In 1872, British astronomer William Huggins used spectroscopy to measure the radial velocity of several prominent stars, including Sirius. [8] Being very difficult to measure, only about 60 stellar parallaxes had been obtained by the end of the 19th century, mostly by use of the filar micrometer.