Search results
Results from the WOW.Com Content Network
The magnetosphere of Jupiter is the cavity created in the solar wind by Jupiter's magnetic field.Extending up to seven million kilometers in the Sun's direction and almost to the orbit of Saturn in the opposite direction, Jupiter's magnetosphere is the largest and most powerful of any planetary magnetosphere in the Solar System, and by volume the largest known continuous structure in the Solar ...
The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...
The Jupiter radius or Jovian radius (R J or R Jup) has a value of 71,492 km (44,423 mi), or 11.2 Earth radii (R 🜨) [2] (one Earth radius equals 0.08921 R J). The Jupiter radius is a unit of length used in astronomy to describe the radii of gas giants and some exoplanets. It is also used in describing brown dwarfs.
Like Saturn's largest moon Titan, it is larger than the planet Mercury, but has somewhat less surface gravity than Mercury, Io, or the Moon due to its lower density compared to the three. [18] Ganymede orbits Jupiter in roughly seven days and is in a 1:2:4 orbital resonance with the moons Europa and Io, respectively.
Jupiter on Saturday will shine at its brightest for the year, as Earth’s orbit swings our planet between Jupiter and the sun. Weather permitting, the gas giant will not only be brighter than ...
Surrounding Jupiter's magnetosphere is a magnetopause, located at the inner edge of a magnetosheath—a region between it and the bow shock. The solar wind interacts with these regions, elongating the magnetosphere on Jupiter's lee side and extending it outward until it nearly reaches the orbit of Saturn. The four largest moons of Jupiter all ...
For the giant planets, the "radius" is defined as the distance from the center at which the atmosphere reaches 1 bar of atmospheric pressure. [ 11 ] Because Sedna and 2002 MS 4 have no known moons, directly determining their mass is impossible without sending a probe (estimated to be from 1.7x10 21 to 6.1×10 21 kg for Sedna [ 12 ] ).
These ejections can collide with Earth’s magnetosphere, the barrier protecting humanity from the harshest effects of space weather, to produce geomagnetic storms that unleash spectacular views ...