enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Alpha helix - Wikipedia

    en.wikipedia.org/wiki/Alpha_helix

    The pitch of the alpha-helix (the vertical distance between consecutive turns of the helix) is 5.4 Å (0.54 nm), which is the product of 1.5 and 3.6. The most important thing is that the N-H group of one amino acid forms a hydrogen bond with the C=O group of the amino acid four residues earlier; this repeated i + 4 → i hydrogen bonding is the ...

  3. Helical wheel - Wikipedia

    en.wikipedia.org/wiki/Helical_wheel

    A helical wheel is a type of plot or visual representation used to illustrate the properties of alpha helices in proteins. The sequence of amino acids that make up a helical region of the protein's secondary structure are plotted in a rotating manner where the angle of rotation between consecutive amino acids is 100°, so that the final ...

  4. Protein folding - Wikipedia

    en.wikipedia.org/wiki/Protein_folding

    The alpha helix spiral formation An anti-parallel beta pleated sheet displaying hydrogen bonding within the backbone Formation of a secondary structure is the first step in the folding process that a protein takes to assume its native structure.

  5. Rossmann fold - Wikipedia

    en.wikipedia.org/wiki/Rossmann_fold

    The Rossmann fold is a tertiary fold found in proteins that bind nucleotides, such as enzyme cofactors FAD, NAD +, and NADP +.This fold is composed of alternating beta strands and alpha helical segments where the beta strands are hydrogen bonded to each other forming an extended beta sheet and the alpha helices surround both faces of the sheet to produce a three-layered sandwich.

  6. Protein secondary structure - Wikipedia

    en.wikipedia.org/wiki/Protein_secondary_structure

    These methods were based on the helix- or sheet-forming propensities of individual amino acids, sometimes coupled with rules for estimating the free energy of forming secondary structure elements. The first widely used techniques to predict protein secondary structure from the amino acid sequence were the Chou–Fasman method [ 17 ] [ 18 ] [ 19 ...

  7. Supersecondary structure - Wikipedia

    en.wikipedia.org/wiki/Supersecondary_structure

    Two Rossmann folds in Cryptosporidium parvum lactate dehydrogenase, with NAD+ bound. A beta-alpha-beta motif is composed of two beta strands joined by an alpha helix through connecting loops. The beta strands are parallel, and the helix is also almost parallel to the strands. This structure can be seen in almost all proteins with parallel strands.

  8. Protein structure prediction - Wikipedia

    en.wikipedia.org/wiki/Protein_structure_prediction

    An alpha-helix with hydrogen bonds (yellow dots) The α-helix is the most abundant type of secondary structure in proteins. The α-helix has 3.6 amino acids per turn with an H-bond formed between every fourth residue; the average length is 10 amino acids (3 turns) or 10 Å but varies from 5 to 40 (1.5 to 11 turns). The alignment of the H-bonds ...

  9. Helix bundle - Wikipedia

    en.wikipedia.org/wiki/Helix_bundle

    Other examples of four-helix bundles include cytochrome, ferritin, human growth hormone, cytokine, [5] and Lac repressor C-terminal. The four-helix bundle fold has proven an attractive target for de novo protein design, with numerous de novo four-helix bundle proteins having been successfully designed by rational [6] and by combinatorial [7 ...