enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.

  3. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives:

  4. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    Metric tensors resulting from cases where the resultant differential equations can be solved exactly for a physically reasonable distribution of energy–momentum are called exact solutions. Examples of important exact solutions include the Schwarzschild solution and the Friedman-Lemaître-Robertson–Walker solution.

  5. Klein–Gordon equation - Wikipedia

    en.wikipedia.org/wiki/Klein–Gordon_equation

    Any solution of the free Dirac equation is, for each of its four components, a solution of the free Klein–Gordon equation. Despite historically it was invented as a single particle equation the Klein–Gordon equation cannot form the basis of a consistent quantum relativistic one-particle theory, any relativistic theory implies creation and ...

  6. Introduction to the mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_the...

    The stress–energy tensor is the source of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity. Because this tensor has 2 indices (see next section) the Riemann curvature tensor has to be contracted into the Ricci tensor, also with 2 indices.

  7. Relativistic Euler equations - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Euler_equations

    The equations of motion are contained in the continuity equation of the stress–energy tensor: =, where is the covariant derivative. [5] For a perfect fluid, = (+) +. Here is the total mass-energy density (including both rest mass and internal energy density) of the fluid, is the fluid pressure, is the four-velocity of the fluid, and is the metric tensor. [2]

  8. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).

  9. Four-momentum - Wikipedia

    en.wikipedia.org/wiki/Four-momentum

    When the equations of motion are known (or simply assumed to be satisfied), one may let go of the requirement δq(t 2) = 0. In this case the path is assumed to satisfy the equations of motion, and the action is a function of the upper integration limit δq(t 2), but t 2 is still fixed.