enow.com Web Search

  1. Ad

    related to: finding radius from arc length and circumference
  2. generationgenius.com has been visited by 100K+ users in the past month

Search results

  1. Results from the WOW.Com Content Network
  2. Circular arc - Wikipedia

    en.wikipedia.org/wiki/Circular_arc

    A circular sector is shaded in green. Its curved boundary of length L is a circular arc. A circular arc is the arc of a circle between a pair of distinct points.If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians (180 degrees); and the other arc, the major arc, subtends an angle ...

  3. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    In the following lines, represents the radius of a circle, is its diameter, is its circumference, is the length of an arc of the circle, and is the angle which the arc subtends at the centre of the circle.

  4. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    Usually, chord length and height are given or measured, and sometimes the arc length as part of the perimeter, and the unknowns are area and sometimes arc length. These can't be calculated simply from chord length and height, so two intermediate quantities, the radius and central angle are usually calculated first.

  5. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    The sagitta (also known as the versine) is a line segment drawn perpendicular to a chord, between the midpoint of that chord and the arc of the circle. Given the length y of a chord and the length x of the sagitta, the Pythagorean theorem can be used to calculate the radius of the unique circle that will fit around the two lines: = +.

  6. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As 1 2 l {\displaystyle {\tfrac {1}{2}}l} and r − s {\displaystyle r-s} are two sides of a right triangle with r {\displaystyle r} as the hypotenuse , the Pythagorean ...

  7. Circumference - Wikipedia

    en.wikipedia.org/wiki/Circumference

    The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. [1] More generally, the perimeter is the curve length around any closed figure. Circumference may also refer to the circle itself, that is, the locus corresponding to the edge of a disk.

  8. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    Let the length of A′B be c n, which we call the complement of s n; thus c n 2 +s n 2 = (2r) 2. Let C bisect the arc from A to B, and let C′ be the point opposite C on the circle. Thus the length of CA is s 2n, the length of C′A is c 2n, and C′CA is itself a right triangle on diameter C′C.

  9. Central angle - Wikipedia

    en.wikipedia.org/wiki/Central_angle

    Angle AOB is a central angle. A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one (measured in radians). [1]

  1. Ad

    related to: finding radius from arc length and circumference