enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    [2] For functions of three or more variables, the determinant of the Hessian does not provide enough information to classify the critical point, because the number of jointly sufficient second-order conditions is equal to the number of variables, and the sign condition on the determinant of the Hessian is only one of the conditions.

  3. Discriminant - Wikipedia

    en.wikipedia.org/wiki/Discriminant

    Then the discriminant is the product of the a i, which is well-defined as a class in K/(K ×) 2. Geometrically, the discriminant of a quadratic form in three variables is the equation of a quadratic projective curve. The discriminant is zero if and only if the curve is decomposed in lines (possibly over an algebraically closed extension of the ...

  4. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    In vector calculus, the Jacobian matrix (/ dʒ ə ˈ k oʊ b i ə n /, [1] [2] [3] / dʒ ɪ-, j ɪ-/) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives.

  5. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    [2] [3] [4] The determinant of the Hessian matrix, when evaluated at a critical point of a function, is equal to the Gaussian curvature of the function considered as a manifold. The eigenvalues of the Hessian at that point are the principal curvatures of the function, and the eigenvectors are the principal directions of curvature.

  6. Discriminant of an algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Discriminant_of_an...

    An integer that occurs as the discriminant of a quadratic number field is called a fundamental discriminant. [3] Cyclotomic fields: let n > 2 be an integer, let ζ n be a primitive nth root of unity, and let K n = Q(ζ n) be the nth cyclotomic field. The discriminant of K n is given by [2] [4]

  7. Partial derivative - Wikipedia

    en.wikipedia.org/wiki/Partial_derivative

    Once a value of y is chosen, say a, then f(x,y) determines a function f a which traces a curve x 2 + ax + a 2 on the xz-plane: = + +. In this expression, a is a constant, not a variable, so f a is a function of only one real variable, that being x. Consequently, the definition of the derivative for a function of one variable applies:

  8. Weierstrass elliptic function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_elliptic_function

    The real part of the discriminant as a function of the square of the nome q on the unit disk. The modular discriminant Δ is defined as the discriminant of the characteristic polynomial of the differential equation ℘ ′ 2 ( z ) = 4 ℘ 3 ( z ) − g 2 ℘ ( z ) − g 3 {\displaystyle \wp '^{2}(z)=4\wp ^{3}(z)-g_{2}\wp (z)-g_{3}} as follows ...

  9. Minkowski's bound - Wikipedia

    en.wikipedia.org/wiki/Minkowski's_bound

    Let D be the discriminant of the field, n be the degree of K over , and = be the number of complex embeddings where is the number of real embeddings.Then every class in the ideal class group of K contains an integral ideal of norm not exceeding Minkowski's bound