Search results
Results from the WOW.Com Content Network
It was the first such scheme to use randomization in the encryption process. The algorithm has never gained much acceptance in the cryptographic community, but is a candidate for "post-quantum cryptography", as it is immune to attacks using Shor's algorithm and – more generally – measuring coset states using Fourier sampling. [2]
For example, asymmetric encryption for a user is represented by the encryption function and the decryption function . Their main properties are that their composition is the identity function ( D x E x = E x D x = 1 {\displaystyle D_{x}E_{x}=E_{x}D_{x}=1} ) and that an encrypted message E x ( M ) {\displaystyle E_{x}(M)} reveals nothing about M ...
The definition of security achieved by Cramer–Shoup is formally termed "indistinguishability under adaptive chosen ciphertext attack" (IND-CCA2).This security definition is currently the strongest definition known for a public key cryptosystem: it assumes that the attacker has access to a decryption oracle which will decrypt any ciphertext using the scheme's secret decryption key.
The OAEP algorithm is a form of Feistel network which uses a pair of random oracles G and H to process the plaintext prior to asymmetric encryption. When combined with any secure trapdoor one-way permutation f {\displaystyle f} , this processing is proved in the random oracle model to result in a combined scheme which is semantically secure ...
Goldwasser–Micali consists of three algorithms: a probabilistic key generation algorithm which produces a public and a private key, a probabilistic encryption algorithm, and a deterministic decryption algorithm. The scheme relies on deciding whether a given value x is a square mod N, given the factorization (p, q) of N. This can be ...
Public-key encryption schemes (26 P) Z. Zero-knowledge protocols (6 P) Pages in category "Asymmetric-key algorithms" The following 15 pages are in this category, out ...
Because asymmetric key algorithms are nearly always much more computationally intensive than symmetric ones, it is common to use a public/private asymmetric key-exchange algorithm to encrypt and exchange a symmetric key, which is then used by symmetric-key cryptography to transmit data using the now-shared symmetric key for a symmetric key ...
For example, the optimal asymmetric encryption padding (OAEP) scheme uses a simple Feistel network to randomize ciphertexts in certain asymmetric-key encryption schemes. A generalized Feistel algorithm can be used to create strong permutations on small domains of size not a power of two (see format-preserving encryption). [9]