Search results
Results from the WOW.Com Content Network
The length of line of the intersection of channel wetted surface with a cross sectional plane normal to the flow direction. The term wetted perimeter is common in civil engineering , environmental engineering , hydrology , geomorphology , and heat transfer applications; it is associated with the hydraulic diameter or hydraulic radius .
The cross-sectional area (′) of an object when viewed from a particular angle is the total area of the orthographic projection of the object from that angle. For example, a cylinder of height h and radius r has A ′ = π r 2 {\displaystyle A'=\pi r^{2}} when viewed along its central axis, and A ′ = 2 r h {\displaystyle A'=2rh} when viewed ...
Diagram showing definitions and directions for Darcy's law. A is the cross sectional area (m 2) of the cylinder. Q is the flow rate (m 3 /s) of the fluid flowing through the area A. The flux of fluid through A is q = Q/A. L is the length of the cylinder. Δp = p outlet - p inlet = p b - p a.
In hydrology, discharge is the volumetric flow rate (volume per time, in units of m 3 /h or ft 3 /h) of a stream.It equals the product of average flow velocity (with dimension of length per time, in m/h or ft/h) and the cross-sectional area (in m 2 or ft 2). [1]
For example, for a rectangular cross section, with constant channel width B and channel bed elevation z b, the cross sectional area is: A = B (ζ − z b) = B h. The instantaneous water depth is h(x,t) = ζ(x,t) − z b (x), with z b (x) the bed level (i.e. elevation of the lowest point in the bed above datum, see the cross-section figure).
Darcy's law is a constitutive equation, empirically derived by Henry Darcy in 1856, which states that the amount of groundwater discharging through a given portion of aquifer is proportional to the cross-sectional area of flow, the hydraulic gradient, and the hydraulic conductivity.
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .
3-dimensional case: Suppose two regions in three-space (solids) are included between two parallel planes. If every plane parallel to these two planes intersects both regions in cross-sections of equal area, then the two regions have equal volumes.