Search results
Results from the WOW.Com Content Network
Physical scientists often use the term root mean square as a synonym for standard deviation when it can be assumed the input signal has zero mean, that is, referring to the square root of the mean squared deviation of a signal from a given baseline or fit. [8] [9] This is useful for electrical engineers in calculating the "AC only" RMS of a signal.
In fluid dynamics, normalized root mean square deviation (NRMSD), coefficient of variation (CV), and percent RMS are used to quantify the uniformity of flow behavior such as velocity profile, temperature distribution, or gas species concentration. The value is compared to industry standards to optimize the design of flow and thermal equipment ...
When a dynamical system fluctuates about some well-defined average position, the RMSD from the average over time can be referred to as the RMSF or root mean square fluctuation. The size of this fluctuation can be measured, for example using Mössbauer spectroscopy or nuclear magnetic resonance, and can provide important physical information.
The qualification of "rms" (root mean square) arises because it is the nuclear cross-section, proportional to the square of the radius, which is determining for electron scattering. This definition of charge radius is often applied to composite hadrons such as a proton , neutron , pion , or kaon , that are made up of more than one quark .
In electronics and electrical engineering, the form factor of an alternating current waveform (signal) is the ratio of the RMS (root mean square) value to the average value (mathematical mean of absolute values of all points on the waveform). [1] It identifies the ratio of the direct current of equal power relative to the given alternating ...
The second moment of a random variable, () is also called the mean square. The square root of a mean square is known as the root mean square (RMS or rms), and can be used as an estimate of the standard deviation of a random variable when the random variable is zero-mean.
In mathematics, the QM-AM-GM-HM inequalities, also known as the mean inequality chain, state the relationship between the harmonic mean, geometric mean, arithmetic mean, and quadratic mean (also known as root mean square). Suppose that ,, …, are positive real numbers. Then
S m is the mean spacing between peaks. Just as with real mountains it is important to define a "peak". For S m the surface must have dipped below the mean surface before rising again to a new peak. The average wavelength a and the root mean square wavelength q are derived from a.