Search results
Results from the WOW.Com Content Network
In mathematics, a solid Klein bottle is a three-dimensional topological space (a 3-manifold) whose boundary is the Klein bottle. [ 1 ] It is homeomorphic to the quotient space obtained by gluing the top disk of a cylinder D 2 × I {\displaystyle \scriptstyle D^{2}\times I} to the bottom disk by a reflection across a diameter of the disk.
In dimension 3, the fractional linear action of PGL(2, C) on the Riemann sphere is identified with the action on the conformal boundary of hyperbolic 3-space induced by the isomorphism O + (1, 3) ≅ PGL(2, C). This allows one to study isometries of hyperbolic 3-space by considering spectral properties of representative complex matrices.
The 3-sphere is the boundary of a -ball in four-dimensional space. The ( n − 1 ) {\displaystyle (n-1)} -sphere is the boundary of an n {\displaystyle n} -ball. Given a Cartesian coordinate system , the unit n {\displaystyle n} -sphere of radius 1 {\displaystyle 1} can be defined as:
A two-dimensional representation of the Klein bottle immersed in three-dimensional space. In mathematics, the Klein bottle (/ ˈ k l aɪ n /) is an example of a non-orientable surface; that is, informally, a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the traveler upside down.
In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space.
The Shape of Space: How to Visualize Surfaces and Three-dimensional Manifolds. A Warning on terminology: Our two-sphere is defined in three-dimensional space, where it is the boundary of a three-dimensional ball. This terminology is standard among mathematicians, but not among physicists.
In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...
In the mathematical field of geometric topology, the Poincaré conjecture (UK: / ˈ p w æ̃ k ær eɪ /, [2] US: / ˌ p w æ̃ k ɑː ˈ r eɪ /, [3] [4] French: [pwɛ̃kaʁe]) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space.