enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Solid Klein bottle - Wikipedia

    en.wikipedia.org/wiki/Solid_Klein_bottle

    In mathematics, a solid Klein bottle is a three-dimensional topological space (a 3-manifold) whose boundary is the Klein bottle. [ 1 ] It is homeomorphic to the quotient space obtained by gluing the top disk of a cylinder D 2 × I {\displaystyle \scriptstyle D^{2}\times I} to the bottom disk by a reflection across a diameter of the disk.

  3. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    In dimension 3, the fractional linear action of PGL(2, C) on the Riemann sphere is identified with the action on the conformal boundary of hyperbolic 3-space induced by the isomorphism O + (1, 3) ≅ PGL(2, C). This allows one to study isometries of hyperbolic 3-space by considering spectral properties of representative complex matrices.

  4. n-sphere - Wikipedia

    en.wikipedia.org/wiki/N-sphere

    The 3-sphere is the boundary of a ⁠ ⁠-ball in four-dimensional space. The ⁠ ( n − 1 ) {\displaystyle (n-1)} ⁠ -sphere is the boundary of an ⁠ n {\displaystyle n} ⁠ -ball. Given a Cartesian coordinate system , the unit ⁠ n {\displaystyle n} ⁠ -sphere of radius ⁠ 1 {\displaystyle 1} ⁠ can be defined as:

  5. Klein bottle - Wikipedia

    en.wikipedia.org/wiki/Klein_bottle

    A two-dimensional representation of the Klein bottle immersed in three-dimensional space. In mathematics, the Klein bottle (/ ˈ k l aɪ n /) is an example of a non-orientable surface; that is, informally, a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the traveler upside down.

  6. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space.

  7. 3-sphere - Wikipedia

    en.wikipedia.org/wiki/3-sphere

    The Shape of Space: How to Visualize Surfaces and Three-dimensional Manifolds. A Warning on terminology: Our two-sphere is defined in three-dimensional space, where it is the boundary of a three-dimensional ball. This terminology is standard among mathematicians, but not among physicists.

  8. Hyperplane - Wikipedia

    en.wikipedia.org/wiki/Hyperplane

    In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...

  9. Poincaré conjecture - Wikipedia

    en.wikipedia.org/wiki/Poincaré_conjecture

    In the mathematical field of geometric topology, the Poincaré conjecture (UK: / ˈ p w æ̃ k ær eɪ /, [2] US: / ˌ p w æ̃ k ɑː ˈ r eɪ /, [3] [4] French: [pwɛ̃kaʁe]) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space.