Ad
related to: algebraic topology prerequisites worksheet answers 5th quarter 3education.com has been visited by 100K+ users in the past month
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Activities & Crafts
Stay creative & active with indoor
& outdoor activities for kids.
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Education.com Blog
Search results
Results from the WOW.Com Content Network
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism , though usually most classify up to homotopy equivalence .
A topological algebra over a topological field is a topological vector space together with a bilinear multiplication ⋅ : A × A → A {\displaystyle \cdot :A\times A\to A} , ( a , b ) ↦ a ⋅ b {\displaystyle (a,b)\mapsto a\cdot b}
Chain (algebraic topology) Betti number; Euler characteristic. Genus; Riemann–Hurwitz formula; Singular homology; Cellular homology; Relative homology; Mayer–Vietoris sequence; Excision theorem; Universal coefficient theorem; Cohomology. List of cohomology theories; Cocycle class; Cup product; Cohomology ring; De Rham cohomology; Čech ...
Acyclic models theorem (algebraic topology) Addition theorem (algebraic geometry) Adiabatic theorem ; Ado's theorem (Lie algebra) Akhiezer's theorem (complex analysis) Akra–Bazzi theorem (computer science) Alternate Interior Angles Theorem ; Alternate segment theorem ; Albert–Brauer–Hasse–Noether theorem
In algebraic topology, the fundamental group (,) of a pointed topological space (,) is defined as the group of homotopy classes of loops based at .This definition works well for spaces such as real and complex manifolds, but gives undesirable results for an algebraic variety with the Zariski topology.
This terminology is often used in the case of the algebraic topology on the set of discrete, faithful representations of a Kleinian group into PSL(2,C). Another topology, the geometric topology (also called the Chabauty topology ), can be put on the set of images of the representations, and its closure can include extra Kleinian groups that are ...
Let be a Grothendieck topology and a scheme.Moreover let be a group scheme over , a -torsor (or principal -bundle) over for the topology (or simply a -torsor when the topology is clear from the context) is the data of a scheme and a morphism : with a -invariant (right) action on that is locally trivial in i.e. there exists a covering {} such that the base change over is isomorphic to the ...
The Brouwer fixed point theorem was one of the early achievements of algebraic topology, and is the basis of more general fixed point theorems which are important in functional analysis. The case n = 3 first was proved by Piers Bohl in 1904 (published in Journal für die reine und angewandte Mathematik). [14]
Ad
related to: algebraic topology prerequisites worksheet answers 5th quarter 3education.com has been visited by 100K+ users in the past month