enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    An infimum of a set is always and only defined relative to a superset of the set in question. For example, there is no infimum of the positive real numbers inside the positive real numbers (as their own superset), nor any infimum of the positive real numbers inside the complex numbers with positive real part.

  3. Completeness (order theory) - Wikipedia

    en.wikipedia.org/wiki/Completeness_(order_theory)

    All completeness properties are described along a similar scheme: one describes a certain class of subsets of a partially ordered set that are required to have a supremum or required to have an infimum. Hence every completeness property has its dual, obtained by inverting the order-dependent definitions in the given statement. Some of the ...

  4. Order theory - Wikipedia

    en.wikipedia.org/wiki/Order_theory

    This concept is also called supremum or join, and for a set S one writes sup(S) or for its least upper bound. Conversely, the greatest lower bound is known as infimum or meet and denoted inf(S) or . These concepts play an important role in many applications of order theory.

  5. Limit-preserving function (order theory) - Wikipedia

    en.wikipedia.org/wiki/Limit-preserving_function...

    Then f preserves the supremum of S if the set f(S) = {f(x) | x in S} has a least upper bound in Q which is equal to f(s), i.e. f(sup S) = sup f(S) This definition consists of two requirements: the supremum of the set f(S) exists and it is equal to f(s). This corresponds to the abovementioned parallel to category theory, but is not always ...

  6. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    In mathematics, the least-upper-bound property (sometimes called completeness, supremum property or l.u.b. property) [1] is a fundamental property of the real numbers. More generally, a partially ordered set X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound (supremum) in X .

  7. Upper and lower bounds - Wikipedia

    en.wikipedia.org/wiki/Upper_and_lower_bounds

    The definitions can be generalized to functions and even to sets of functions. Given a function f with domain D and a preordered set (K, ≤) as codomain, an element y of K is an upper bound of f if y ≥ f (x) for each x in D. The upper bound is called sharp if equality holds for at least one value of x. It indicates that the constraint is ...

  8. Join and meet - Wikipedia

    en.wikipedia.org/wiki/Join_and_meet

    Alternatively, if the meet defines or is defined by a partial order, some subsets of indeed have infima with respect to this, and it is reasonable to consider such an infimum as the meet of the subset. For non-empty finite subsets, the two approaches yield the same result, and so either may be taken as a definition of meet.

  9. Order complete - Wikipedia

    en.wikipedia.org/wiki/Order_complete

    In mathematics, specifically in order theory and functional analysis, a subset of an ordered vector space is said to be order complete in if for every non-empty subset of that is order bounded in (meaning contained in an interval, which is a set of the form [,]:= {:}, for some ,), the supremum ' and the infimum both exist and are elements of .