enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    However, the general definitions remain valid in the more abstract setting of order theory where arbitrary partially ordered sets are considered. The concepts of infimum and supremum are close to minimum and maximum, but are more useful in analysis because they better characterize special sets which may have no minimum or maximum.

  3. Measurable function - Wikipedia

    en.wikipedia.org/wiki/Measurable_function

    The (pointwise) supremum, infimum, limit superior, and limit inferior of a sequence (viz., countably many) of real-valued measurable functions are all measurable as well. [ 1 ] [ 4 ] The pointwise limit of a sequence of measurable functions f n : X → Y {\displaystyle f_{n}:X\to Y} is measurable, where Y {\displaystyle Y} is a metric space ...

  4. Join and meet - Wikipedia

    en.wikipedia.org/wiki/Join_and_meet

    Alternatively, if the meet defines or is defined by a partial order, some subsets of indeed have infima with respect to this, and it is reasonable to consider such an infimum as the meet of the subset. For non-empty finite subsets, the two approaches yield the same result, and so either may be taken as a definition of meet.

  5. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    In mathematics, the least-upper-bound property (sometimes called completeness, supremum property or l.u.b. property) [1] is a fundamental property of the real numbers. More generally, a partially ordered set X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound (supremum) in X .

  6. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    Hence, it is the supremum of the limit points. The infimum/inferior/inner limit is a set where all of these accumulation sets meet. That is, it is the intersection of all of the accumulation sets. When ordering by set inclusion, the infimum limit is the greatest lower bound on the set of accumulation points because it is contained in each of ...

  7. Completeness (order theory) - Wikipedia

    en.wikipedia.org/wiki/Completeness_(order_theory)

    All completeness properties are described along a similar scheme: one describes a certain class of subsets of a partially ordered set that are required to have a supremum or required to have an infimum. Hence every completeness property has its dual, obtained by inverting the order-dependent definitions in the given statement. Some of the ...

  8. Upper and lower bounds - Wikipedia

    en.wikipedia.org/wiki/Upper_and_lower_bounds

    The definitions can be generalized to functions and even to sets of functions. Given a function f with domain D and a preordered set (K, ≤) as codomain, an element y of K is an upper bound of f if y ≥ f (x) for each x in D. The upper bound is called sharp if equality holds for at least one value of x. It indicates that the constraint is ...

  9. Lattice (order) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(order)

    An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor.

  1. Related searches infimum and supremum proof definition examples psychology today magazine

    supremum and infimumsupremum vs infima
    supremum vs infimum examplessupremum wikipedia
    supremum vs infimum wikipedia