Search results
Results from the WOW.Com Content Network
[1] [10] Another precarious convention used by a small number of authors is to use an uppercase first letter, along with a “ −1 ” superscript: Sin −1 (x), Cos −1 (x), Tan −1 (x), etc. [11] Although it is intended to avoid confusion with the reciprocal, which should be represented by sin −1 (x), cos −1 (x), etc., or, better, by ...
Cot-1, COT-1, cot-1, or cot −1 may refer to: Cot-1 DNA , used in comparative genomic hybridization cot −1 y = cot −1 ( y ), sometimes interpreted as arccot( y ) or arccotangent of y , the compositional inverse of the trigonometric function cotangent (see below for ambiguity)
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin θ < θ. So we have < <. For negative values of θ we have, by the symmetry of the sine function
The points labeled 1, Sec(θ), Csc(θ) represent the length of the line segment from the origin to that point. Sin(θ), Tan(θ), and 1 are the heights to the line starting from the x-axis, while Cos(θ), 1, and Cot(θ) are lengths along the x-axis starting from the origin.
There are six in common use: inverse hyperbolic sine, inverse hyperbolic cosine, inverse hyperbolic tangent, inverse hyperbolic cosecant, inverse hyperbolic secant, and inverse hyperbolic cotangent. They are commonly denoted by the symbols for the hyperbolic functions, prefixed with arc- or ar- , or with a superscript − 1 {\displaystyle {-1 ...
Tan-1, TAN-1, tan-1, or tan −1 may refer to: tan −1 y = tan −1 ( x ), sometimes interpreted as arctan( x ) or arctangent of x , the compositional inverse of the trigonometric function tangent (see below for ambiguity)
2.3 Trigonometric, inverse trigonometric, hyperbolic, and inverse hyperbolic functions relationship. 2.4 Modified-factorial denominators. 2.5 Binomial coefficients.