Search results
Results from the WOW.Com Content Network
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. [5] They are generally produced in the process of alpha decay but may also be produced in other ways. Alpha particles are named after the first letter in the Greek alphabet, α.
Liquid water and ice emit radiation at a higher rate than water vapour (see graph above). Water at the top of the troposphere, particularly in liquid and solid states, cools as it emits net photons to space. Neighboring gas molecules other than water (e.g. nitrogen) are cooled by passing their heat kinetically to the water.
However, this type of radiation is significantly absorbed by the Earth's atmosphere, which is a radiation shield equivalent to about 10 meters of water. [ 7 ] The alpha particle was named by Ernest Rutherford after the first letter in the Greek alphabet , α , when he ranked the known radioactive emissions in descending order of ionising effect ...
The following are among the principal radioactive materials known to emit alpha particles. 209 Bi , 211 Bi , 212 Bi , 213 Bi 210 Po , 211 Po , 212 Po , 214 Po , 215 Po , 216 Po , 218 Po
Radium radionuclides emit alpha and beta particles as well as gamma rays. The radiation emitted from a radium 226 atom is 96% alpha particles and 4% gamma rays. The alpha particle is not the most dangerous particle associated with NORM, as an external hazard. Alpha particles are identical with helium-4 nuclei.
Alpha radiation is dangerous when alpha-emitting radioisotopes are inhaled or ingested (breathed or swallowed). This brings the radioisotope close enough to sensitive live tissue for the alpha radiation to damage cells. Per unit of energy, alpha particles are at least 20 times more effective at cell-damage than gamma rays and X-rays.
Radiolysis is the dissociation of molecules by ionizing radiation.It is the cleavage of one or several chemical bonds resulting from exposure to high-energy flux.The radiation in this context is associated with ionizing radiation; radiolysis is therefore distinguished from, for example, photolysis of the Cl 2 molecule into two Cl-radicals, where (ultraviolet or visible spectrum) light is used.
Cherenkov radiation glowing in the core of the Advanced Test Reactor at Idaho National Laboratory. Cherenkov radiation (/ tʃ ə ˈ r ɛ ŋ k ɒ f / [1]) is electromagnetic radiation emitted when a charged particle (such as an electron) passes through a dielectric medium (such as distilled water) at a speed greater than the phase velocity (speed of propagation of a wavefront in a medium) of ...