enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    A general theory covering such relations, including the falling and rising factorial functions, is given by the theory of polynomial sequences of binomial type and Sheffer sequences. Falling and rising factorials are Sheffer sequences of binomial type, as shown by the relations: where the coefficients are the same as those in the binomial theorem.

  3. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    Comparison of Stirling's approximation with the factorial. In mathematics, Stirling's approximation (or Stirling's formula) is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of . It is named after James Stirling, though a related but less precise result was first stated ...

  4. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    In mathematics, the factorial of a non-negative integer , denoted by , is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: For example, The value of 0! is 1, according to the convention for an empty product. [1]

  5. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    Definition. The factorial number system is a mixed radix numeral system: the i -th digit from the right has base i, which means that the digit must be strictly less than i, and that (taking into account the bases of the less significant digits) its value is to be multiplied by (i − 1)! (its place value). Radix/Base. 8.

  6. Factorial prime - Wikipedia

    en.wikipedia.org/wiki/Factorial_prime

    (resulting in 24 factorial primes - the prime 2 is repeated) No other factorial primes are known as of October 2022. When both n! + 1 and n! − 1 are composite, there must be at least 2n + 1 consecutive composite numbers around n!, since besides n! ± 1 and n! itself, also, each number of form n! ± k is divisible by k for 2 ≤ k ≤ n.

  7. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    Fibonacci sequence. In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn . The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes ...

  8. Stirling numbers of the first kind - Wikipedia

    en.wikipedia.org/wiki/Stirling_numbers_of_the...

    Definitions. Stirling numbers of the first kind are the coefficients in the expansion of the falling factorial. into powers of the variable : For example, , leading to the values , , and . Subsequently, it was discovered that the absolute values of these numbers are equal to the number of permutations of certain kinds.

  9. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    A recurrence relation is an equation that expresses each element of a sequence as a function of the preceding ones. More precisely, in the case where only the immediately preceding element is involved, a recurrence relation has the form. where. is a function, where X is a set to which the elements of a sequence must belong.