enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Flux - Wikipedia

    en.wikipedia.org/wiki/Flux

    Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport phenomena, flux is a vector quantity, describing the magnitude and direction of the flow of a substance or property. In vector calculus flux is a scalar quantity, defined as the surface integral of the perpendicular component of a ...

  3. Fluxion - Wikipedia

    en.wikipedia.org/wiki/Fluxion

    A fluxion is the instantaneous rate of change, or gradient, of a fluent (a time-varying quantity, or function) at a given point. [1] Fluxions were introduced by Isaac Newton to describe his form of a time derivative (a derivative with respect to time). Newton introduced the concept in 1665 and detailed them in his mathematical treatise, Method ...

  4. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    Here, the electric field outside (r > R) and inside (r < R) of a charged sphere is being calculated (see Wikiversity). In physics (specifically electromagnetism), Gauss's law, also known as Gauss's flux theorem (or sometimes Gauss's theorem), is one of Maxwell's equations. It is an application of the divergence theorem, and it relates the ...

  5. Divergence theorem - Wikipedia

    en.wikipedia.org/wiki/Divergence_theorem

    In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, [1] is a theorem relating the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed. More precisely, the divergence theorem states that the surface integral of a vector field over a closed surface ...

  6. Continuity equation - Wikipedia

    en.wikipedia.org/wiki/Continuity_equation

    See also: Mass flux, Mass flow rate, and Vorticity equation. In fluid dynamics, the continuity equation states that the rate at which mass enters a system is equal to the rate at which mass leaves the system plus the accumulation of mass within the system. [ 1 ][ 2 ] The differential form of the continuity equation is: [ 1 ] where.

  7. Inverse-square law - Wikipedia

    en.wikipedia.org/wiki/Inverse-square_law

    S represents the light source, while r represents the measured points. The lines represent the flux emanating from the sources and fluxes. The total number of flux lines depends on the strength of the light source and is constant with increasing distance, where a greater density of flux lines (lines per unit area) means a stronger energy field.

  8. Method of Fluxions - Wikipedia

    en.wikipedia.org/wiki/Method_of_Fluxions

    For a period of time encompassing Newton's working life, the discipline of analysis was a subject of controversy in the mathematical community. Although analytic techniques provided solutions to long-standing problems, including problems of quadrature and the finding of tangents, the proofs of these solutions were not known to be reducible to the synthetic rules of Euclidean geometry.

  9. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.