Search results
Results from the WOW.Com Content Network
H is a forerunner of Shannon's information entropy. Claude Shannon denoted his measure of information entropy H after the H-theorem. [17] The article on Shannon's information entropy contains an explanation of the discrete counterpart of the quantity H, known as the information
Entropy is a scientific concept that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the microscopic description of nature in statistical physics, and to the principles of information theory.
This is the differential entropy (or continuous entropy). A precursor of the continuous entropy h[f] is the expression for the functional Η in the H-theorem of Boltzmann. Although the analogy between both functions is suggestive, the following question must be set: is the differential entropy a valid extension of the Shannon discrete entropy?
The entropy is thus a measure of the uncertainty about exactly which quantum state the system is in, given that we know its energy to be in some interval of size . Deriving the fundamental thermodynamic relation from first principles thus amounts to proving that the above definition of entropy implies that for reversible processes we have:
The question of why entropy increases until equilibrium is reached was answered in 1877 by physicist Ludwig Boltzmann. The theory developed by Boltzmann and others, is known as statistical mechanics. Statistical mechanics explains thermodynamics in terms of the statistical behavior of the atoms and molecules which make up the system.
The Mollier enthalpy–entropy diagram for water and steam. The "dryness fraction", x , gives the fraction by mass of gaseous water in the wet region, the remainder being droplets of liquid. An enthalpy–entropy chart , also known as the H – S chart or Mollier diagram , plots the total heat against entropy, [ 1 ] describing the enthalpy of a ...
A representation of Hess's law (where H represents enthalpy) Hess's law of constant heat summation, also known simply as Hess's law, is a relationship in physical chemistry and thermodynamics [1] named after Germain Hess, a Swiss-born Russian chemist and physician who published it in 1840.
This graph is called the "Van 't Hoff plot" and is widely used to estimate the enthalpy and entropy of a chemical reaction. From this plot, − Δ r H / R is the slope, and Δ r S / R is the intercept of the linear fit.