enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    In Euclidean space, two vectors are orthogonal if and only if their dot product is zero, i.e. they make an angle of 90° (radians), or one of the vectors is zero. [4] Hence orthogonality of vectors is an extension of the concept of perpendicular vectors to spaces of any dimension.

  3. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    One may compare linear motion to general motion. In general motion, a particle's position and velocity are described by vectors, which have a magnitude and direction. In linear motion, the directions of all the vectors describing the system are equal and constant which means the objects move along the same axis and do not change direction.

  4. Geometric terms of location - Wikipedia

    en.wikipedia.org/wiki/Geometric_terms_of_location

    Collinear – in the same line; Parallel – in the same direction. Transverse – intersecting at any angle, i.e. not parallel. Orthogonal (or perpendicular) – at a right angle (at the point of intersection). Elevation – along a curve from a point on the horizon to the zenith, directly overhead.

  5. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move. [1] [2] [3] Kinematics, as a field of study, is often referred to as the "geometry of motion" and is ...

  6. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    The green line shows the slope of the velocity-time graph at the particular point where the two lines touch. Its slope is the acceleration at that point. Its slope is the acceleration at that point. In mechanics , the derivative of the position vs. time graph of an object is equal to the velocity of the object.

  7. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  8. Instant centre of rotation - Wikipedia

    en.wikipedia.org/wiki/Instant_centre_of_rotation

    The only line that fills the requirement is a line colinear with link P 1-A. Somewhere on this line there is a point P, the instant center of rotation for the body BAC. What applies to point A also applies to point B, therefore this instant center of rotation P is located on a line perpendicular to vector V B, a line colinear with link P 2-B.

  9. Position (geometry) - Wikipedia

    en.wikipedia.org/wiki/Position_(geometry)

    Kinematic quantities of a classical particle: mass m, position r, velocity v, acceleration a. For a position vector r that is a function of time t, the time derivatives can be computed with respect to t. These derivatives have common utility in the study of kinematics, control theory, engineering and other sciences. Velocity

  1. Related searches all graphs of kinematics and vectors are perpendicular lines that move in different

    polar kinematic vectortransverse or perpendicular
    polar coordinate kinematicstangential or perpendicular