Search results
Results from the WOW.Com Content Network
Spectral graph theory emerged in the 1950s and 1960s. Besides graph theoretic research on the relationship between structural and spectral properties of graphs, another major source was research in quantum chemistry , but the connections between these two lines of work were not discovered until much later. [ 15 ]
Fan-Rong King Chung Graham (Chinese: 金芳蓉; pinyin: Jīn Fāngróng; born October 9, 1949), known professionally as Fan Chung, is a Taiwanese-born American mathematician who works mainly in the areas of spectral graph theory, extremal graph theory and random graphs, in particular in generalizing the Erdős–Rényi model for graphs with general degree distribution (including power-law ...
Algebraic graph theory is a branch of mathematics in which algebraic methods are applied to problems about graphs. This is in contrast to geometric, combinatoric, or algorithmic approaches. There are three main branches of algebraic graph theory, involving the use of linear algebra, the use of group theory, and the study of graph invariants.
In spectral graph theory, the Alon–Boppana bound provides a lower bound on the second-largest eigenvalue of the adjacency matrix of a -regular graph, [1] meaning a graph in which every vertex has degree .
If the edge density (,) is fixed at (+ ()), then the condition implies that the sequence of graphs is near the equality case in Sidorenko's property for every graph . From Chung, Graham, and Wilson's 1989 paper about quasi-random graphs, it suffices for the count to match what would be expected of a random graph (i.e. the condition holds for ...
The expander mixing lemma intuitively states that the edges of certain -regular graphs are evenly distributed throughout the graph. In particular, the number of edges between two vertex subsets S {\displaystyle S} and T {\displaystyle T} is always close to the expected number of edges between them in a random d {\displaystyle d} - regular graph ...
The Laplacian matrix is the easiest to define for a simple graph, but more common in applications for an edge-weighted graph, i.e., with weights on its edges — the entries of the graph adjacency matrix. Spectral graph theory relates properties of a graph to a spectrum, i.e., eigenvalues, and eigenvectors of matrices associated with the graph ...
The name spectral theory was introduced by David Hilbert in his original formulation of Hilbert space theory, which was cast in terms of quadratic forms in infinitely many variables. The original spectral theorem was therefore conceived as a version of the theorem on principal axes of an ellipsoid , in an infinite-dimensional setting.