Search results
Results from the WOW.Com Content Network
The law of heat conduction, also known as Fourier's law (compare Fourier's heat equation), states that the rate of heat transfer through a material is proportional to the negative gradient in the temperature and to the area, at right angles to that gradient, through which the heat flows.
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
In numerical analysis, the Crank–Nicolson method is a finite difference method used for numerically solving the heat equation and similar partial differential equations. [1] It is a second-order method in time. It is implicit in time, can be written as an implicit Runge–Kutta method, and it is numerically stable.
In numerical analysis, the FTCS (forward time-centered space) method is a finite difference method used for numerically solving the heat equation and similar parabolic partial differential equations. [1] It is a first-order method in time, explicit in time, and is conditionally stable when applied to the heat equation.
Stencil figure for the alternating direction implicit method in finite difference equations. The traditional method for solving the heat conduction equation numerically is the Crank–Nicolson method. This method results in a very complicated set of equations in multiple dimensions, which are costly to solve.
In this method, the basic shape function is modified to obtain the upwinding effect. This method is an extension of Runge–Kutta discontinuous for a convection-diffusion equation. For time-dependent equations, a different kind of approach is followed. The finite difference scheme has an equivalent in the finite element method (Galerkin method ...
In mathematics and physics, the heat equation is a parabolic partial differential equation. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region. Since then, the heat equation and its variants have been found to be fundamental in ...
The most popular methods are: Finite difference time-domain (FDTD) method, Finite element method (FEM) and method of moments (MoM). The finite-difference time-domain (FDTD) method is a robust and popular technique that consists in solving differential equations numerically as well as certain boundary conditions defined by the problem.