Search results
Results from the WOW.Com Content Network
Rubidium-82 (82 Rb) is a radioactive isotope of rubidium. 82 Rb is widely used in myocardial perfusion imaging. This isotope undergoes rapid uptake by myocardiocytes, which makes it a valuable tool for identifying myocardial ischemia in Positron Emission Tomography (PET) imaging. 82 Rb is used in the pharmaceutical industry and is marketed as ...
Other than 87 Rb, the longest-lived radioisotopes are 83 Rb with a half-life of 86.2 days, 84 Rb with a half-life of 33.1 days, and 86 Rb with a half-life of 18.642 days. All other radioisotopes have half-lives less than a day. 82 Rb is used in some cardiac positron emission tomography scans to assess myocardial perfusion. It has a half-life of ...
Rubidium is a chemical element; it has symbol Rb and atomic number 37. It is a very soft, whitish-grey solid in the alkali metal group, similar to potassium and caesium. [9] Rubidium is the first alkali metal in the group to have a density higher than water.
Rubidium-82 chloride is a form of rubidium chloride containing a radioactive isotope of rubidium. It is marketed under the brand name Cardiogen-82 by Bracco Diagnostics for use in Myocardial perfusion imaging . [ 1 ]
A table or chart of nuclides is a two-dimensional graph of isotopes of the elements, in which one axis represents the number of neutrons (symbol N) and the other represents the number of protons (atomic number, symbol Z) in the atomic nucleus. Each point plotted on the graph thus represents a nuclide of a known or hypothetical chemical element.
The darker more stable isotope region departs from the line of protons (Z) = neutrons (N), as the element number Z becomes larger. This is a list of chemical elements by the stability of their isotopes. Of the first 82 elements in the periodic table, 80 have isotopes considered to be stable. [1] Overall, there are 251 known stable isotopes in ...
A further 10 nuclides, platinum-190, samarium-147, lanthanum-138, rubidium-87, rhenium-187, lutetium-176, thorium-232, uranium-238, potassium-40, and uranium-235 have half-lives between 7.0 × 10 8 and 4.83 × 10 11 years, which means they have experienced at least 0.5% depletion since the formation of the Solar System about 4.6 × 10 9 years ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us