Search results
Results from the WOW.Com Content Network
An equivalent definition of entropy is the expected value of the self-information of a variable. [1] Two bits of entropy: In the case of two fair coin tosses, the information entropy in bits is the base-2 logarithm of the number of possible outcomes — with two coins there are four possible outcomes, and two bits of entropy. Generally ...
Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.
For an open thermodynamic system in which heat and work are transferred by paths separate from the paths for transfer of matter, using this generic balance equation, with respect to the rate of change with time of the extensive quantity entropy , the entropy balance equation is: [53] [54] [note 1] = = ˙ ^ + ˙ + ˙ where = ˙ ^ is the net rate ...
Other important information theoretic quantities include the Rényi entropy and the Tsallis entropy (generalizations of the concept of entropy), differential entropy (a generalization of quantities of information to continuous distributions), and the conditional mutual information.
The relationship between entropy, order, and disorder in the Boltzmann equation is so clear among physicists that according to the views of thermodynamic ecologists Sven Jorgensen and Yuri Svirezhev, "it is obvious that entropy is a measure of order or, most likely, disorder in the system."
Thermodynamic entropy is equal to the Boltzmann constant times the information entropy expressed in nats. The information entropy expressed with the unit shannon (Sh) is equal to the number of yes–no questions that need to be answered in order to determine the microstate from the macrostate. The concepts of "disorder" and "spreading" can be ...
In information theory, the Rényi entropy is a quantity that generalizes various notions of entropy, including Hartley entropy, Shannon entropy, collision entropy, and min-entropy. The Rényi entropy is named after Alfréd Rényi , who looked for the most general way to quantify information while preserving additivity for independent events.
The von Neumann entropy formula is an extension of the Gibbs entropy formula to the quantum mechanical case. It has been shown [ 1 ] that the Gibbs Entropy is equal to the classical "heat engine" entropy characterized by d S = δ Q T {\displaystyle dS={\frac {\delta Q}{T}}\!} , and the generalized Boltzmann distribution is a sufficient and ...