Search results
Results from the WOW.Com Content Network
For a protein containing n amino acids, the number of high-energy phosphate bonds required to translate it is 4n-1. [9] The rate of translation varies; it is significantly higher in prokaryotic cells (up to 17–21 amino acid residues per second) than in eukaryotic cells (up to 6–9 amino acid residues per second). [10]
Elongation is the most rapid step in translation. [3] In bacteria, it proceeds at a rate of 15 to 20 amino acids added per second (about 45-60 nucleotides per second). [citation needed] In eukaryotes the rate is about two amino acids per second (about 6 nucleotides read per second).
Translation is one of the key energy consumers in cells, hence it is strictly regulated. Numerous mechanisms have evolved that control and regulate translation in eukaryotes as well as prokaryotes. Regulation of translation can impact the global rate of protein synthesis which is closely coupled to the metabolic and proliferative state of a cell.
Amino acids can have multiple codons that correspond to them. Ribosomes do not directly attach amino acids to mRNA codons. They must utilize tRNAs (transfer RNAs) as well. Transfer RNAs can bind to amino acids and contain an anticodon which can hydrogen bind to an mRNA codon. [13] The process of bind an amino acid to a tRNA is known as tRNA ...
Subclasses are based on the reaction processes that provide the driving force for the translocation. At present there is only one subclass: EC 7.4.2 Translocation of amino acids and peptides linked to the hydrolysis of a nucleoside triphosphate. [23] 7.4.2.1 ABC-type polar-amino-acid transporter
An aminoacyl-tRNA, with the tRNA above the arrow and a generic amino acid below the arrow. Most of the tRNA structure is shown as a simplified, colorful ball-and-stick model; the terminal adenosine and the amino acid are shown as structural formulas. The arrow indicates the ester linkage between the amino acid and tRNA.
Asparagine (symbol Asn or N [2]) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH + 3 form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO − form under biological conditions), and a side chain carboxamide ...
The chain has two ends – an amine group, the N-terminus, and an unbound carboxyl group, the C-terminus. [2] When a protein is translated from messenger RNA, it is created from N-terminus to C-terminus. The amino end of an amino acid (on a charged tRNA) during the elongation stage of translation, attaches to the carboxyl end of the growing chain.