Search results
Results from the WOW.Com Content Network
Time dilation. Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them (special relativity), or a difference in gravitational potential between their locations (general relativity). When unspecified, "time dilation" usually refers to the effect due to velocity.
Special relativity. Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as ...
Lorentz factor. {\displaystyle \gamma = {\frac {1} {\sqrt {1-\beta ^ {2}}}}} where and v is the relative velocity between two inertial frames. For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames. As the relative velocity approaches the speed of light, γ → ∞. Time dilation (different times t ...
v. t. e. In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it. [1] The equations were published by Albert Einstein in 1915 in the form of a tensor equation [2] which related the local spacetime curvature (expressed by ...
e. General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal ...
A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth.
In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.
v. t. e. The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun.