Search results
Results from the WOW.Com Content Network
This increase of temperature with altitude is characteristic of the stratosphere; its resistance to vertical mixing means that it is stratified. Within the stratosphere temperatures increase with altitude (see temperature inversion); the top of the stratosphere has a temperature of about 270 K (−3°C or 26.6°F). [9] [page needed]
In 1847, Carl Bergmann published his observations that endothermic body size (i.e. mammals) increased with increasing latitude, commonly known as Bergmann's rule. [9] His rule postulated that selection favored within species individuals with larger body sizes in cooler temperatures because the total heat loss would be diminished through lower surface area to volume ratios. [8]
In the mesosphere, temperature decreases as altitude increases. This characteristic is used to define limits: it begins at the top of the stratosphere (sometimes called the stratopause), and ends at the mesopause, which is the coldest part of Earth's atmosphere, with temperatures below −143 °C (−225 °F; 130 K).
The tropopause is defined as the lowest level at which the lapse rate decreases to 2°C/km or less, provided that the average lapse-rate, between that level and all other higher levels within 2.0 km does not exceed 2°C/km. [1] The tropopause is a first-order discontinuity surface, in which temperature as a function of height varies ...
The temperature of the troposphere decreases with increased altitude, and the rate of decrease in air temperature is measured with the Environmental Lapse Rate (/) which is the numeric difference between the temperature of the planetary surface and the temperature of the tropopause divided by the altitude.
Average maximum yearly temperature is 28.7 °C and average minimum is 21.9 °C. The average temperature range is 5.7 °C only. Temperature variation throughout the year in Aracaju is very damped, with a standard deviation of 1.93 °C for the maximum temperature and 2.72 °C for the minimum temperature. [6]
Potential temperature is a useful measure of the static stability of the unsaturated atmosphere. Under normal, stably stratified conditions, the potential temperature increases with height, [3] > and vertical motions are suppressed. If the potential temperature decreases with height, [3]
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...