Search results
Results from the WOW.Com Content Network
A remarkable example of this occurred before the 1989 Loma Prieta earthquake in California, [21] although a subsequent study indicates that this was little more than a sensor malfunction. [22] On December 9, 2010, geoscientists announced that the DEMETER satellite observed a dramatic increase in ULF radio waves over Haiti in the month before ...
The global electromagnetic resonance phenomenon is named after physicist Winfried Otto Schumann who predicted it mathematically in 1952. Schumann resonances are the principal background in the part of the electromagnetic spectrum [2] from 3 Hz through 60 Hz [3] and appear as distinct peaks at extremely low frequencies around 7.83 Hz (fundamental), 14.3, 20.8, 27.3, and 33.8 Hz.
Above the Curie temperature, the atoms are excited, and the spin orientations become randomized [8] but can be realigned by an applied field, i.e., the material becomes paramagnetic. Below the Curie temperature, the intrinsic structure has undergone a phase transition, [15] the atoms are ordered, and the material is ferromagnetic. [11]
A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the currents are driven by the solar wind and interplanetary magnetic field (IMF) and by bulk motions ...
Magnetic reconnection is a breakdown of "ideal-magnetohydrodynamics" and so of "Alfvén's theorem" (also called the "frozen-in flux theorem") which applies to large-scale regions of a highly-conducting magnetoplasma, for which the Magnetic Reynolds Number is very large: this makes the convective term in the induction equation dominate in such regions.
Magnetosphere particle motion. A sketch of Earth's magnetic field representing the source of Earth's magnetic field as a magnet The North Pole of Earth is near the top of the diagram, the South Pole near the bottom. Notice that the South Pole of that magnet is deep in Earth's interior below Earth's North Magnetic Pole.
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.
Magnetosphere. A rendering of the magnetic field lines of the magnetosphere of the Earth. In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. [1][2] It is created by a celestial body with an active interior dynamo.