enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bitwise operations in C - Wikipedia

    en.wikipedia.org/wiki/Bitwise_operations_in_C

    The bitwise XOR (exclusive or) performs an exclusive disjunction, which is equivalent to adding two bits and discarding the carry. The result is zero only when we have two zeroes or two ones. [3] XOR can be used to toggle the bits between 1 and 0. Thus i = i ^ 1 when used in a loop toggles its values between 1 and 0. [4]

  3. Bitwise operation - Wikipedia

    en.wikipedia.org/wiki/Bitwise_operation

    Bitwise AND of 4-bit integers. A bitwise AND is a binary operation that takes two equal-length binary representations and performs the logical AND operation on each pair of the corresponding bits. Thus, if both bits in the compared position are 1, the bit in the resulting binary representation is 1 (1 × 1 = 1); otherwise, the result is 0 (1 × ...

  4. Bitwise trie with bitmap - Wikipedia

    en.wikipedia.org/wiki/Bitwise_trie_with_bitmap

    A bitwise trie is a special form of trie where each node with its child-branches represents a bit sequence of one or more bits of a key. A bitwise trie with bitmap uses a bitmap to denote valid child branches.

  5. Hamming weight - Wikipedia

    en.wikipedia.org/wiki/Hamming_weight

    As Wegner described in 1960, [12] the bitwise AND of x with x − 1 differs from x only in zeroing out the least significant nonzero bit: subtracting 1 changes the rightmost string of 0s to 1s, and changes the rightmost 1 to a 0. If x originally had n bits that were 1, then after only n iterations of this operation, x will be reduced to zero ...

  6. XOR swap algorithm - Wikipedia

    en.wikipedia.org/wiki/XOR_swap_algorithm

    Using the XOR swap algorithm to exchange nibbles between variables without the use of temporary storage. In computer programming, the exclusive or swap (sometimes shortened to XOR swap) is an algorithm that uses the exclusive or bitwise operation to swap the values of two variables without using the temporary variable which is normally required.

  7. Commutative property - Wikipedia

    en.wikipedia.org/wiki/Commutative_property

    Perhaps most familiar as a property of arithmetic, e.g. "3 + 4 = 4 + 3" or "2 × 5 = 5 × 2", the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction , that do not have it (for example, "3 − 5 ≠ 5 − 3" ); such operations are not commutative, and so are ...

  8. Arithmetic shift - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_shift

    The formal definition of an arithmetic shift, from Federal Standard 1037C is that it is: . A shift, applied to the representation of a number in a fixed radix numeration system and in a fixed-point representation system, and in which only the characters representing the fixed-point part of the number are moved.

  9. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    A remark on terminology: The system is referred to as "ones' complement" because the negation of a positive value x (represented as the bitwise NOT of x) can also be formed by subtracting x from the ones' complement representation of zero that is a long sequence of ones (−0).