Search results
Results from the WOW.Com Content Network
Aromaticity is found in ions as well: the cyclopropenyl cation (2e system), the cyclopentadienyl anion (6e system), the tropylium ion (6e), and the cyclooctatetraene dianion (10e). Aromatic properties have been attributed to non-benzenoid compounds such as tropone. Aromatic properties are tested to the limit in a class of compounds called ...
Heteroarenes are aromatic compounds, where at least one methine or vinylene (-C= or -CH=CH-) group is replaced by a heteroatom: oxygen, nitrogen, or sulfur. [3] Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one ...
Homoaromaticity, in organic chemistry, refers to a special case of aromaticity in which conjugation is interrupted by a single sp 3 hybridized carbon atom. Although this sp 3 center disrupts the continuous overlap of p-orbitals, traditionally thought to be a requirement for aromaticity, considerable thermodynamic stability and many of the spectroscopic, magnetic, and chemical properties ...
Clar's rule states that for a benzenoid polycyclic aromatic hydrocarbon (i.e. one with only hexagonal rings), the resonance structure with the largest number of disjoint aromatic π-sextets is the most important to characterize its chemical and physical properties. Such a resonance structure is called a Clar structure. In other words, a ...
The value gives an approximation for the content of aromatic compounds in the oil, [2] since the miscibility of aniline, which is also an aromatic compound suggests the presence of similar (i.e. aromatic) compounds in the oil. The lower the aniline point, the greater is the content of aromatic compounds in the oil.
In 2011, Jordi Poater and Miquel Solà expanded the rule to open-shell spherical compounds, finding they were aromatic when they had 2n 2 + 2n + 1 π-electrons, with spin S = (n + 1/2) - corresponding to a half-filled last energy level with the same spin. For instance C 60 1– is also observed to be aromatic with a spin of 11/2. [16]
Metal aromaticity or metalloaromaticity is the concept of aromaticity, found in many organic compounds, extended to metals and metal-containing compounds. [1] The first experimental evidence for the existence of aromaticity in metals was found in aluminium cluster compounds of the type MAl − 4 where M stands for lithium, sodium or copper. [2]
Aromatic compounds, also known as arenes or aromatics, are chemical compounds that contain conjugated planar ring systems with delocalized pi electron clouds instead of discrete alternating single and double bonds. Typical aromatic compounds are benzene and toluene. They should satisfy Hückel's rule.