Search results
Results from the WOW.Com Content Network
In probability theory, an event is a set of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]
Statistics are helpful in analyzing most collections of data. This is equally true of hypothesis testing which can justify conclusions even when no scientific theory exists. In the Lady tasting tea example, it was "obvious" that no difference existed between (milk poured into tea) and (tea poured into milk). The data contradicted the "obvious".
The experiment asked whether a taster could tell if the milk was added before the brewed tea, when preparing a cup of tea. Ronald Fisher in 1913 In the design of experiments in statistics , the lady tasting tea is a randomized experiment devised by Ronald Fisher and reported in his book The Design of Experiments (1935). [ 1 ]
In the examples listed above, a nuisance variable is a variable that is not the primary focus of the study but can affect the outcomes of the experiment. [3] They are considered potential sources of variability that, if not controlled or accounted for, may confound the interpretation between the independent and dependent variables.
A random experiment is described or modeled by a mathematical construct known as a probability space. A probability space is constructed and defined with a specific kind of experiment or trial in mind. A mathematical description of an experiment consists of three parts: A sample space, Ω (or S), which is the set of all possible outcomes.
This example of design experiments is attributed to Harold Hotelling, building on examples from Frank Yates. [21] [22] [14] The experiments designed in this example involve combinatorial designs. [23] Weights of eight objects are measured using a pan balance and set of standard weights. Each weighing measures the weight difference between ...
Replication in statistics evaluates the consistency of experiment results across different trials to ensure external validity, while repetition measures precision and internal consistency within the same or similar experiments. [5] Replicates Example: Testing a new drug's effect on blood pressure in separate groups on different days.
For an approximately normal data set, the values within one standard deviation of the mean account for about 68% of the set; while within two standard deviations account for about 95%; and within three standard deviations account for about 99.7%. Shown percentages are rounded theoretical probabilities intended only to approximate the empirical ...